Mobile Application Development | week9

\Vobile Application
Development

Weekl0 Use Scaffold Layout Template

Yi SUN
Kobe Institute of Computing

Understand the Scaffold in Jetpack Compose

Scaffold is a composable that serves as a layout foundation,
simplifying the implementation of a screen’s structure,
including common Ul elements like top bars, bottom
navigation, floating action buttons, and snackbars. By using
Scaffold, you can create a well-organized and consistent
layout with ease.

Key Components of Scaffold:

« TopBar: Displays a TopAppBar for navigation, titles, or actions.

« BottomBar: Typically used to display a navigation bar for different
sections of the app.

« FloatingActionButton (FAB): A button used to execute primary actions.

« SnackbarHost: A container to display brief messages (snack bars).

« Content: The main body of the Ul.

An example of Scaffold

@Composable

fun Scaffold(
modifier: Modifier = Modifier,
topBar: @Composable () -> Unit = {},
bottomBar: @Composable () -> Unit = {},
snackbarHost: @Composable () -> Unit = {},
floatingActionButton: @Composable () -> Unit = {},
floatingActionButtonPosition: FabPosition = FabPosition.End,
containerColor: Color = MaterialTheme.colorScheme.background,
contentColor: Color = contentColorFor(containerColor),
contentWindowlnsets: Windowlnsets = ScaffoldDefaults.contentWindowlInsets,
content: @Composable (PaddingValues) -> Unit

Ref: https://medium.com/@ramadanl?23sayed/understanding-scaffold-in-jetpack-compose-a-
comprehensive-guide-e248c2406412

https://medium.com/@ramadan123sayed/understanding-scaffold-in-jetpack-compose-a-comprehensive-guide-e248c2406412
https://medium.com/@ramadan123sayed/understanding-scaffold-in-jetpack-compose-a-comprehensive-guide-e248c2406412

Start from a Sampe application
Personal library management

e Function
« List up all books in your bookshelf
« Add the new book to your App

« What you learn
« Use the TopBar and FloatingActionButton

« Link the Data with ROOM database for data permanent repository
(next week)

Open AndroidStudio
Select File > New > NewProject

Choose Empty Activity
Name: MyLibraryApp

> wn =

Add the navigation dependencies

 Make sure you've added the correct dependency in your
build.gradle (app-level) file:

v (&7 Gradle Scripts
&3 build.gradlekts (Project: tteess)

E’E; build.gradle.kts (Module :app)

— dependencies {
= proguard-rules.pro (ProGuard Rules for ":app”) val nav_version = "2.8.8"

£33 gradle.properties (Project Properties)

implementation("androidx.navigation:navigation-compose:$nav_version")
» Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

£} gradle-wrapper.properties (Gradle Version)

libs.versions.toml (Version Catalog)

€3 local properties (SDK Location) « Sync the Project:After making these changes, sync your

£3 settings.gradle kts (Project Settings) project in Android Studio to download the dependency.
« Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >

Invalidate Caches / Restart... in Android Studio.
5

Prepare the Topbar view

Add a new Kotlin file AppBar.kt 3180 O @ B G40

@Composable
fun AppBarView(
title: String,
onBackNavClicked: ()-> Unit = {}
A
TopAppBar(title = {
Text(text= title,
color= colorResource(id=R.color.white),
modifier = Modifier.padding(start = 4.dp).heightin(max=24.dp)
)}
modifier = Modifier.statusBarsPadding(),
colors = TopAppBarDefaults.topAppBarColors(
containerColor = colorResource(id=R.color.teal 200)

)
)
}

Prepare the Home view

318G 90 @ 1 34N

Add a new Kotlin file HomeView.kt Book List
@Composable
fun HomeView(modifier: Modifier = Modifier){
Scaffold(
topBar ={ AppBarView(title="Book List"

) {
LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) { }

}

}

Modify the MainActivity.kt file

MyLibraryAppTheme {
Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->
HomeView(modifier = Modifier.padding(innerPadding))

}
}
}

}

Add a Navigationlcon to AppBar

AppBar.kt

fun AppBarView(

title: String,

onBackNavClicked: ()-> Unit = {} 3229 O 6 O e
X ——

val navigationlcon : @Composable (()->Unit) ={ Foe

IconButton(onClick = {onBackNavClicked()}) {
lcon(

iImageVector = lcons.AutoMirrored.Filled.ArrowBack, /
tint= Color.White,
contentDescription = "Back icon"
)
}

}
TopAppBar(title = {
Text(text= title,
color= colorResource(id=R.color.white),

modifier = Modifier.padding(start = 4.dp).heightin(max=24.dp)

)}
modifier = Modifier.statusBarsPadding(),
navigationlcon=navigationlcon,
colors = TopAppBarDefaults.topAppBarColors(
containerColor = colorResource(id=R.color.teal _200)

Only show the Backlcon when not on the home

SCreen

AppBar.kt

fun AppBarView(
title: String,
onBackNavClicked: ()-> Unit = {}
i
val navigationlcon : @ Composable ()->Unit)? =
if("title.contains("Book List")){

{

IconButton(onClick = {onBackNavClicked()}) {
Icon(
imageVector = Icons.AutoMirrored.Filled.ArrowBack,
tint= Color.White,
contentDescription = "Back icon"

)

}
}Helse{

null
}

TopAppBar(title = {

Text(text= title,
color= colorResource(id=R.color.white),
modifier = Modifier.padding(start = 4.dp).heightin(max=24.dp)

)}

modifier = Modifier.statusBarsPadding(),

| navigationlcon=navigationlcon ?: {},

colors = TopAppBarDefaults.topAppBarColors(

containerColor = colorResource(id=R.color.teal_200)

)

Add a FloatingActionButton at Home view

Homeview. kt

fun HomeView(modifier: Modifier){
Scaffold(
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {
FloatingActionButton
onClick = {},
modifier = Modifier.padding(all =

)1

lcon(
ImageVector = Icons.Default.Add, contentDescription = "a

) 5
}
}

LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) { } .
} -

}

10

Prepare the data class of books

Add a new file Book.kt

data class Book(
val id: Long = OL,

val title: String="",

val isbn: String="",
val author: String="",

Add a card view for each book item

Homeview.kt
@Composable L Do
fun Bookltem(book:Book, onClick: ' e fendamenal of Javs
Card(trer=Modifier.fillMaxSize() e ser8123
.padding(top = 8.dp, start = 8.dp, end= 8.dp) e o o vt
.clickable { onClick() }
i i
Column(modifier = Modifier.padding(16.dp)) { o
Text(text= book.title, fontWeight = FontWeight.Bold)
Text(text=book.author)
Text(text=book.isbn)
}
}
} -
r

12

prepare the Dummy book data

Book.kt

object Dummybook{
val bookList = listOf(
Book(title="The fundamental of Kotlin", isbn="918-1234567", author="Tom"),
Book(title="The fundamental of Java", isbn="915-45678123", author="Herry"),
Book(title="The arts of Android development", isbn="916-1234567", author="Petter"),
Book(title="The history of Nintendo", isbn="918-7985412", author="Mario"),

)
}

13

Display the Dummy data in home view

Homeview. kt

@Composable
fun HomeView(modifier: Modifier){
Scaffold(
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {

FloatingActionButton(
onClick = {},
modifier = Modifier.padding(all = 20.dp),

) {
lcon(

ImageVector = Icons.Default.Add, contentDescription = "add button"

)

}

}
) {

LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {
items(Dummybook.bookList){
book -> Bookltem(book = book) { }

}
}

}

4M9 QA B G40

The fundamental of Kotlin
Tom
918-1234567

The fundamental of Java
Herry
915-45678123

The arts of Android development
Petter
916-1234567

The history of Nintendo
Mario
918-7985412

14

Prepare the Navigation

Add a Screen.ktfile to store the route of Screens

sealed class Screen(val route:String) {
object HomeScreen: Screen("home_screen")
object AddScreen: Screen("add _screen")

}

Add a BookViewModel class BookViewModel. kt
file to present the BookView

class BookViewModel:ViewModel() {
}

Add a Navigation.ktfile to manage the screen navi

@Composable
fun Navigation(

modifier: Modifier

}

viewModel: BookViewModel = viewModel(),
navController: NavHostController = rememberNavController(),

composable(Screen.HomeScreen.route){ HomeView(modifier)}

) {
NavHost(
navController = navController,
startDestination = Screen.HomeScreen.route
A
}

15

Modity the MainActivity and HomeView

MainActivity.kt Homeview.kt
class MainActivity : ComponentActivity() { @Composable
override fun onCreate(savedinstanceState: Bundle?) { fun HomeView(modifier: Modifier){
super.onCreate(savedlnstanceState) Scaffold(

enableEdgeToEdge()
setContent {
MyLibraryAppTheme {
MyLibraryAppTheme {

Navigation(modifier = Modifier.fillMaxSize())

modifier = modifier,
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {
FloatingActionButton(
onClick = {},
modifier = Modifier.padding(all = 20.dp),

) {

16

Add a Book info edit(add) view

Add a AddEditDetailView.kt file to present the edit book info view

@Composable
fun AddEditDetailView(
id: Long,
viewModel: BookViewModel,
navController: NavController
A
Scaffold(
topBar = {AppBarView(title = if(id = OL) "Update Book info" else "Add New Book")}
)

{

Column(modifier = Modifier.padding(it).wrapContentSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center)

{

Spacer(modifier = Modifier.height(10.dp))

}

}
}

17

Design the Outlined TextField

AddEditDetailView.kt

10559 A vaa

@Composable
fun BookTextField(
label:String,
value:String,
onValueChanged: (String) -> Unit
X
OutlinedTextFiel
value = value,
onValueChange = onValueChanged,
label = { Text(text = label, color = Color.Black)},
modifier = Modifier.fillMaxWidth(),
keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Text),
colors = TextFieldDefaults.colors(
focusedTextColor = Color.Black,
unfocusedTextColor = Color.Black,
cursorColor = Color.Blue,
focusedContainerColor = Color.White,
unfocusedContainerColor = Color.White

< Add New Book

/v{ Title

New Book Info

ro
18

Modity the BookViewModel

BookViewModel.kt

class BookViewModel:ViewModel() {
var bookTitleState by mutableState Of("")
var bookAuthorState by mutableStateOf("")
var booklsbnState by mutableStateOf("")

fun onBookTitleChanged(newString:String){
bookTitleState = newString

}

fun onBookAuthorChanged(newString:String){
bookAuthorState = newString

}

fun onBooklsbnChanged(newString:String){
booklsbnState = newString

}

19

Modity the AddEditDetailView to design the screen

AddEditDetailView.kt

Spacer(modifier = Modifier.height(10.dp))
BookTextField(
label = "Title",
value = viewModel.bookTitleState,
onValueChanged = { viewModel.onBookTitleChanged(it) }
)
Spacer(modifier = Modifier.height(10.dp))
BookTextField(
label = "Author",
value = viewModel.bookAuthorState,
onValueChanged = { viewModel.onBookAuthorChanged(it) }
)
Spacer(modifier = Modifier.height(10.dp))
BookTextField(
label = "ISBN",
value = viewModel.booklsbnState,
onValueChanged = { viewModel.onBooklsbnChanged(it) }

)
Spacer(modifier = Modifier.height(10.dp))

Spacer(modifier = Modifier.height(10.dp))
Button(onClick = {
if(viewModel.bookTitleState.isNotEmpty()&&
viewModel.bookAuthorState.isNotEmpty()&&
viewModel.booklsbnState.isNotEmpty()){

lelse{}

)l
Text(

text = if (id != OL) "Update Book Info" else "New Book Info",
style = TextStyle(fontSize = 18.sp)

)

20

Modity the Navigation

Navigation.kt

@Composable
fun Navigation(
viewModel: BookViewModel = viewModel(),
navController: NavHostController = rememberNavController(),
modifier: Modifier
) {
NavHost(
navController = navController,
startDestination = Screen.HomeScreen.route

N}

composable(Screen.HomeScreen.route){ HomeView(modifier,navController,viewModel)}
composable(Screen.AddScreen.route){
AddEditDetailView(id = OL, viewModel = viewModel, navController=navController)

}

21

Add the onClick event in HomeView

Homeview. kt

@Composable

fun HomeView(modifier: Modifier,
navController: NavController,
viewModel: BookViewModel

A
Scaffold(

modifier = modifier,
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {

FloatingActionButton(
onClick 3 {navController.navigate(Screen.AddScreen.route)},

modifier = Modifier.padding(all = 20.dp),
) {

lcon(
ImageVector = Icons.Default.Add, contentDescription = "add button"

)

22

Add the Back lcon event by navigatUp()

AddEditDetailView. kt

fun AddEditDetailView(

id: Long,

viewModel: BookViewModel,

navController. NavController
i

Scaffold(

topBar = {

AppBarView(title = if(id != OL) "Update Book info" else "Add New Book")
{navController.navigateUp()}

}
)

{
Column(modifier = Modifier.padding(it).wrapContentSize(),

23

	Slide 1: Mobile Application Development
	Slide 2: Understand the Scaffold in Jetpack Compose
	Slide 3: An example of Scaffold
	Slide 4: Start from a Sampe application Personal library management
	Slide 5: Add the navigation dependencies
	Slide 6: Prepare the Topbar view
	Slide 7: Prepare the Home view
	Slide 8: Add a NavigationIcon to AppBar
	Slide 9: Only show the BackIcon when not on the home screen
	Slide 10: Add a FloatingActionButton at Home view
	Slide 11: Prepare the data class of books
	Slide 12: Add a card view for each book item
	Slide 13: prepare the Dummy book data
	Slide 14: Display the Dummy data in home view
	Slide 15: Prepare the Navigation
	Slide 16: Modify the MainActivity and HomeView
	Slide 17: Add a Book info edit(add) view
	Slide 18: Design the OutlinedTextField
	Slide 19: Modify the BookViewModel
	Slide 20: Modify the AddEditDetailView to design the screen
	Slide 21: Modify the Navigation
	Slide 22: Add the onClick event in HomeView
	Slide 23: Add the Back Icon event by navigatUp()

