
Mobile Application
Development

Week10 Use Scaffold Layout Template

Yi SUN

Kobe Institute of Computing

Mobile Application Development | week9

1

Understand the Scaffold in Jetpack Compose
Scaffold is a composable that serves as a layout foundation,
simplifying the implementation of a screen’s structure,
including common UI elements like top bars, bottom
navigation, floating action buttons, and snackbars. By using
Scaffold, you can create a well-organized and consistent
layout with ease.

2

Key Components of Scaffold:
• TopBar: Displays a TopAppBar for navigation, titles, or actions.
• BottomBar: Typically used to display a navigation bar for different

sections of the app.
• FloatingActionButton (FAB): A button used to execute primary actions.
• SnackbarHost: A container to display brief messages (snack bars).
• Content: The main body of the UI.

An example of Scaffold

3

@Composable
fun Scaffold(

modifier: Modifier = Modifier,
topBar: @Composable () -> Unit = {},
bottomBar: @Composable () -> Unit = {},
snackbarHost: @Composable () -> Unit = {},
floatingActionButton: @Composable () -> Unit = {},
floatingActionButtonPosition: FabPosition = FabPosition.End,
containerColor: Color = MaterialTheme.colorScheme.background,
contentColor: Color = contentColorFor(containerColor),
contentWindowInsets: WindowInsets = ScaffoldDefaults.contentWindowInsets,
content: @Composable (PaddingValues) -> Unit

)

Ref: https://medium.com/@ramadan123sayed/understanding-scaffold-in-jetpack-compose-a-
comprehensive-guide-e248c2406412

https://medium.com/@ramadan123sayed/understanding-scaffold-in-jetpack-compose-a-comprehensive-guide-e248c2406412
https://medium.com/@ramadan123sayed/understanding-scaffold-in-jetpack-compose-a-comprehensive-guide-e248c2406412

Start from a Sampe application
Personal library management

4

• Function
• List up all books in your bookshelf

• Add the new book to your App

• What you learn
• Use the TopBar and FloatingActionButton

• Link the Data with ROOM database for data permanent repository
(next week)

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: MyLibraryApp

dependencies {

 val nav_version = "2.8.8"

 implementation("androidx.navigation:navigation-compose:$nav_version")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

Add the navigation dependencies
• Make sure you’ve added the correct dependency in your

build.gradle (app-level) file:

5

• Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

• Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

Prepare the Topbar view

6

Add a new Kotlin file AppBar.kt

@Composable

fun AppBarView(

 title: String,

 onBackNavClicked: ()-> Unit = {}

){

 TopAppBar(title = {

 Text(text= title,

 color= colorResource(id=R.color.white),

 modifier = Modifier.padding(start = 4.dp).heightIn(max=24.dp)

)},

 modifier = Modifier.statusBarsPadding(),

 colors = TopAppBarDefaults.topAppBarColors(

 containerColor = colorResource(id=R.color.teal_200)

)

)

}

7

Prepare the Home view

Add a new Kotlin file HomeView.kt

@Composable

fun HomeView(modifier: Modifier = Modifier){

 Scaffold(

 topBar ={ AppBarView(title="Book List") }

) {

 LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) { }

 }

}

Modify the MainActivity.kt file

MyLibraryAppTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 HomeView(modifier = Modifier.padding(innerPadding))

 }

 }

 }

}

Add a NavigationIcon to AppBar

8

fun AppBarView(

 title: String,

 onBackNavClicked: ()-> Unit = {}

){

 val navigationIcon : @Composable (()->Unit) ={

 IconButton(onClick = {onBackNavClicked()}) {

 Icon(

 imageVector = Icons.AutoMirrored.Filled.ArrowBack,

 tint= Color.White,

 contentDescription = "Back icon"

)

 }

 }

 TopAppBar(title = {

 Text(text= title,

 color= colorResource(id=R.color.white),

 modifier = Modifier.padding(start = 4.dp).heightIn(max=24.dp)

)},

 modifier = Modifier.statusBarsPadding(),

 navigationIcon=navigationIcon,

 colors = TopAppBarDefaults.topAppBarColors(

 containerColor = colorResource(id=R.color.teal_200)

AppBar.kt

Only show the BackIcon when not on the home
screen

9

fun AppBarView(

 title: String,

 onBackNavClicked: ()-> Unit = {}

){

 val navigationIcon : @Composable (()->Unit)? =

 if(!title.contains("Book List")){

 {

 IconButton(onClick = {onBackNavClicked()}) {

 Icon(

 imageVector = Icons.AutoMirrored.Filled.ArrowBack,

 tint= Color.White,

 contentDescription = "Back icon"

)

 }

 }}else{

 null

 }

 TopAppBar(title = {

 Text(text= title,

 color= colorResource(id=R.color.white),

 modifier = Modifier.padding(start = 4.dp).heightIn(max=24.dp)

)},

 modifier = Modifier.statusBarsPadding(),

 navigationIcon=navigationIcon ?: {},

 colors = TopAppBarDefaults.topAppBarColors(

 containerColor = colorResource(id=R.color.teal_200)

)

AppBar.kt

Add a FloatingActionButton at Home view

10

fun HomeView(modifier: Modifier){

 Scaffold(

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {},

 modifier = Modifier.padding(all = 20.dp),

) {

 Icon(

 imageVector = Icons.Default.Add, contentDescription = "add button"

)

 }

 }

) {

 LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) { }

 }

}

Homeview.kt

Prepare the data class of books

11

data class Book(

 val id: Long = 0L,

 val title: String="",

 val isbn: String="",

 val author: String="",

)

Add a new file Book.kt

Add a card view for each book item

12

@Composable

fun BookItem(book:Book, onClick: ()-> Unit){

 Card(modifier=Modifier.fillMaxSize()

 .padding(top = 8.dp, start = 8.dp, end= 8.dp)

 .clickable { onClick() }

){

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text= book.title, fontWeight = FontWeight.Bold)

 Text(text=book.author)

 Text(text=book.isbn)

 }

 }

}

Homeview.kt

prepare the Dummy book data

13

object Dummybook{

 val bookList = listOf(

 Book(title="The fundamental of Kotlin", isbn="918-1234567", author="Tom"),

 Book(title="The fundamental of Java", isbn="915-45678123", author="Herry"),

 Book(title="The arts of Android development", isbn="916-1234567", author="Petter"),

 Book(title="The history of Nintendo", isbn="918-7985412", author="Mario"),

)

}

Book.kt

Display the Dummy data in home view

14

@Composable

fun HomeView(modifier: Modifier){

 Scaffold(

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {},

 modifier = Modifier.padding(all = 20.dp),

) {

 Icon(

 imageVector = Icons.Default.Add, contentDescription = "add button"

)

 }

 }

) {

 LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {

 items(Dummybook.bookList){

 book -> BookItem(book = book) { }

 }

 }

 }

}

Homeview.kt

Prepare the Navigation

15

Add a Screen.kt file to store the route of Screens

sealed class Screen(val route:String) {

 object HomeScreen: Screen("home_screen")

 object AddScreen: Screen("add_screen")

}

Add a BookViewModel class BookViewModel.kt
file to present the BookView

class BookViewModel:ViewModel() {

}

@Composable

fun Navigation(

 viewModel: BookViewModel = viewModel(),

 navController: NavHostController = rememberNavController(),

 modifier: Modifier

) {

 NavHost(

 navController = navController,

 startDestination = Screen.HomeScreen.route

){

 composable(Screen.HomeScreen.route){ HomeView(modifier)}

 }

}

Add a Navigation.kt file to manage the screen navi

Modify the MainActivity and HomeView

16

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 MyLibraryAppTheme {

 MyLibraryAppTheme {

 Navigation(modifier = Modifier.fillMaxSize())

 }

 }

 }

 }

}

@Composable

fun HomeView(modifier: Modifier){

 Scaffold(

 modifier = modifier,

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {},

 modifier = Modifier.padding(all = 20.dp),

) {

Homeview.ktMainActivity.kt

Add a Book info edit(add) view

17

Add a AddEditDetailView.kt file to present the edit book info view

@Composable

fun AddEditDetailView(

 id: Long,

 viewModel: BookViewModel,

 navController: NavController

){

 Scaffold(

 topBar = {AppBarView(title = if(id != 0L) "Update Book info" else "Add New Book")}

)

 {

 Column(modifier = Modifier.padding(it).wrapContentSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center)

 {

 Spacer(modifier = Modifier.height(10.dp))

 }

 }

}

Design the OutlinedTextField

18

@Composable

fun BookTextField(

 label:String,

 value:String,

 onValueChanged: (String) -> Unit

){

 OutlinedTextField(

 value = value,

 onValueChange = onValueChanged,

 label = { Text(text = label, color = Color.Black)},

 modifier = Modifier.fillMaxWidth(),

 keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Text),

 colors = TextFieldDefaults.colors(
 focusedTextColor = Color.Black,

 unfocusedTextColor = Color.Black,

 cursorColor = Color.Blue,

 focusedContainerColor = Color.White,

 unfocusedContainerColor = Color.White

)

)

}

AddEditDetailView.kt

Modify the BookViewModel

19

class BookViewModel:ViewModel() {

 var bookTitleState by mutableStateOf("")

 var bookAuthorState by mutableStateOf("")

 var bookIsbnState by mutableStateOf("")

 fun onBookTitleChanged(newString:String){

 bookTitleState = newString

 }

 fun onBookAuthorChanged(newString:String){

 bookAuthorState = newString

 }

 fun onBookIsbnChanged(newString:String){

 bookIsbnState = newString

 }

}

BookViewModel.kt

Modify the AddEditDetailView to design the screen

20

{

 Spacer(modifier = Modifier.height(10.dp))

 BookTextField(

 label = "Title",

 value = viewModel.bookTitleState,

 onValueChanged = { viewModel.onBookTitleChanged(it) }

)

 Spacer(modifier = Modifier.height(10.dp))

 BookTextField(

 label = "Author",

 value = viewModel.bookAuthorState,

 onValueChanged = { viewModel.onBookAuthorChanged(it) }

)

 Spacer(modifier = Modifier.height(10.dp))

 BookTextField(

 label = "ISBN",

 value = viewModel.bookIsbnState,

 onValueChanged = { viewModel.onBookIsbnChanged(it) }

)

 Spacer(modifier = Modifier.height(10.dp))

}

…

Spacer(modifier = Modifier.height(10.dp))

 Button(onClick = {

 if(viewModel.bookTitleState.isNotEmpty()&&

 viewModel.bookAuthorState.isNotEmpty()&&

 viewModel.bookIsbnState.isNotEmpty()){

 }else{}

 }){

 Text(

 text = if (id != 0L) "Update Book Info" else "New Book Info",

 style = TextStyle(fontSize = 18.sp)

)

 }
}

AddEditDetailView.kt

Modify the Navigation

21

@Composable

fun Navigation(

 viewModel: BookViewModel = viewModel(),

 navController: NavHostController = rememberNavController(),

 modifier: Modifier

) {

 NavHost(

 navController = navController,

 startDestination = Screen.HomeScreen.route

){

 composable(Screen.HomeScreen.route){ HomeView(modifier,navController,viewModel)}

 composable(Screen.AddScreen.route){

 AddEditDetailView(id = 0L, viewModel = viewModel, navController=navController)

 }

 }

}

Navigation.kt

Add the onClick event in HomeView

22

@Composable

fun HomeView(modifier: Modifier,

 navController: NavController,

 viewModel: BookViewModel

){

 Scaffold(

 modifier = modifier,

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {navController.navigate(Screen.AddScreen.route)},

 modifier = Modifier.padding(all = 20.dp),

) {

 Icon(

 imageVector = Icons.Default.Add, contentDescription = "add button"

)

Homeview.kt

Add the Back Icon event by navigatUp()

23

fun AddEditDetailView(

 id: Long,

 viewModel: BookViewModel,

 navController: NavController

){

 Scaffold(

 topBar = {

 AppBarView(title = if(id != 0L) "Update Book info" else "Add New Book")

 {navController.navigateUp()}

 }

)

 {

 Column(modifier = Modifier.padding(it).wrapContentSize(),

AddEditDetailView.kt

	Slide 1: Mobile Application Development
	Slide 2: Understand the Scaffold in Jetpack Compose
	Slide 3: An example of Scaffold
	Slide 4: Start from a Sampe application Personal library management
	Slide 5: Add the navigation dependencies
	Slide 6: Prepare the Topbar view
	Slide 7: Prepare the Home view
	Slide 8: Add a NavigationIcon to AppBar
	Slide 9: Only show the BackIcon when not on the home screen
	Slide 10: Add a FloatingActionButton at Home view
	Slide 11: Prepare the data class of books
	Slide 12: Add a card view for each book item
	Slide 13: prepare the Dummy book data
	Slide 14: Display the Dummy data in home view
	Slide 15: Prepare the Navigation
	Slide 16: Modify the MainActivity and HomeView
	Slide 17: Add a Book info edit(add) view
	Slide 18: Design the OutlinedTextField
	Slide 19: Modify the BookViewModel
	Slide 20: Modify the AddEditDetailView to design the screen
	Slide 21: Modify the Navigation
	Slide 22: Add the onClick event in HomeView
	Slide 23: Add the Back Icon event by navigatUp()

