Mobile Application Development | week11

\Vobile Application
Development

Weekll Use Room Database, DAO, @Entity

Yi SUN
Kobe Institute of Computing

Use the SOQLite and Room to manage the
data in Local storage

SQLitEis a free and open-source relational database engine written in

the C programming language. |t is not a standalone app; rather, itis a
library that software developers embed in their apps. As such, it belongs
to the family of embedded databases. It is the most widely deployed
database engine, as it is used by several of the top web browsers,
operating systems, mobile phones, and other embedded systems.

The Room persistence library provides an abstraction layer over

SQLite to allow for more robust database access while harnessing the full
power of SQLite.

https://en.wikipedia.org/wiki/SQLite
https://developer.android.com/jetpack/androidx/releases/room

Add the navigation dependencies
« Add the dependency in your build.gradle files

« (project-level) and (app-level)

plugins {
alias(libs.plugins.android.application) apply false
alias(libs.plugins.kotlin.android) apply false
alias(libs.plugins.kotlin.compose) apply false

val room_version ="2.7.1"
v (&7 Gradle Scripts / id("androidx.room™) version "$room_version" apply false
id("com.google.devtools.ksp") version "2.1.20-2.0.0" apply false

&2 build.gradle.kts (Project: MyLibraryApp

E‘E build.gradle kts (Module :app)

= proguard-rules.pro (ProGuard Rules for ™
£33 gradle.properties (Project Properties)

£33 gradle-wrapper.properties (Gradle Version)
libs.versions.toml (Version Catalog)

£33 local.properties (SDK Location)

£ settings.gradlekts (Project Settings)

plugins {
alias(libs.plugins.android.application)
alias(libs.plugins.kotlin.android)
lias(libs.plugins. kol ;
id("androidx.room")
id("com.google.devtools.ksp")

dependencies {

val room_version ="2.7.1"
implementation("androidx.room:room-runtime:$room_version")
ksp("androidx.room:room-compiler:$room_version")
implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.10.2") 3

Change the data class to data

Book.kt

- ntity

@ Entity(tableName = "book-table")
data class Book(
@PrimaryKey(autoGenerate = true)
val id: Long = OL,
@ ColumniInfo(name="book-title")
val title: String="",
@ Columninfo(name="book-isbn")
val isbn: String="",
@ Columninfo(name="book-author")
val author: String=""

Accessing data using Room DAOs

. }/\éhen you use the Room pgrsistence
ibrary to store your app's data, you
interact with the stored data by defining st aidase
data access objects, or DAOs. Each DAO
includes methods that offer abstract
access to your app's database. At
compile time, Room automatically [DataAccessObjects}
generates implementations of the DAOs
that you define.

« By using DAQOs to access your app's
database instead of query builders or

o
Get Entities from db —
Entities

Persist changes
back to db

Get DAO
‘ get / set field values

direct queries, you can preserve ()
separation of concerns, a critical Rest of The App
architectural principle. DAOs also make)

it easier for you to mock database
access when you test your app.

https://developer.android.com/training/data-storage/room/accessing-data

Accessing data using Room DAOs

« Room Entity
« Define an entity to represent the object to be saved

« Each entity corresponds to a table in the associated Room database, and
each instance of the entity represents a data row in the corresponding table

« Room DAO

« Define a Data Access Object (DAO) to operate on the data to be saved

« Each DAO has methods that enable abstract access to the application's
database

. tAutomatically generates the implementation of the DAO defined at compile
ime
« Room Database class

« Serves as the main access point for basic connections to the application's
persistent data, holding the database

Create the BookDao file

BookDao.kt

@Dao
abstract class BookDao {

@Insert(onConflict = OnConflictStrategy.IGNORE)
abstract fun addBook(bookEntity: Book)

@Query("select * from “book-table™)
abstract fun getAllBook(): Flow<List<Book>>

@Update
abstract suspend fun updateBook(bookEntity: Book)

@Delete
abstract suspend fun deleteBook(bookEntity: Book)

@Query("Select * from “book-table” where id=:id")
abstract fun getBookByld(id:Long): Flow<Book>

Create a database Tile and register the Dao

BookDatabase.kt

@ Database(
entities = [Book::class],
version =1,
exportSchema = false

)

abstract class BookDatabase : RoomDatabase() {
abstract fun bookDao(): BookDao

}

https://developer.android.com/training/data-storage/room

Create a Repository to register the function from Dao

BookRespository.kt

class BookRespository(private val bookDao: BookDao) {
suspend fun addBook(book:Book){
bookDao.addBook(book)

}

fun getBooks(): Flow<List<Book>> = bookDao.getAlIBook()

fun getBookByld(id:Long) :Flow<Book> {
return bookDao.getBookByld(id)

}

suspend fun updateBook(book:Book) {
bookDao.updateBook(book)

}

suspend fun deleteBook(book: Book){
bookDao.deleteBook(book)

}
}

Use Dispatchers and lateinit Var in ViewModel

BookViewModel.kt

class BookViewModel(lateinit var is a Kotlin modifier that allows you to declare non-null properties

private val bookRepository: BookRespository without initializing them at declaration time. It essentially tells the compiler: "
): ViewModel() { ' promise to initialize this property before using it."

var bookTitleState by mutableStateOf("") In the example, getAllBooks is declared as a non-null Flow<List<Book>> that
will be initialized sometime after the BookViewModel is created.

lateinit var getAllBooks: Flow<List<Book>>
init
v?eWModeIScope.Iaunch {
getAllBooks = bookRepository.getBooks()
} Dispatchers.lO is specifically optimized for I/0-bound tasks such as:
R = 1,Reading or writing files. 2, Making network requests. 3, Querying
databases. 4, Other blocking I/0 operations.

}

un updateBook(book: Book){ l’\\ These methods provide the CRUD (Create, Read, Update, Delete) operations
viewModelScope.launch(Dispatchers.|O) { ! for the application:

bookRepository.updateBook(book:book):
} |

}
f

}
fun deleteBook(book: Book){
viewModelScope.launch(Dispatchers.lO) { 1
bookRepository.deleteBook(bhook=book) :

}

} ! 10

Use Graph to initialize the database

Create a new file of Graph object

BookDatabase.kt

object Graph {

lateinit var database: BookDatabase This creates a lazy property for

bookRespository. It means bookRespository
/ won't be created until it’s first accessed.lt

val bookRespository by lazy {

BookRespository(bookDao = database.bookDao()) [injects bookDao from the BookDatabase. _ S
} This function initializes the

database using Room's

creates an instance of BookRespository and

databaseBuilder.It tells Room to

fun provide(context: Context){ build a BookDatabase object
database = Room.databaseBuilder(context,BookDatabase::class.java, "booklist.db").build() — using the given context and the
} name "booklist.db" for the SQLite
} file.

The Graph object in this code represents a simple dependency injection container (also called a service locator) that
manages database-related dependencies throughout the Android application. The Graph singleton serves several
important functions:

1, Dependency Container: It acts as a central location for creating, storing, and providing access to application
dependencies (database and repository instances). 2, Database Provider: It initializes and provides access to the Room
database throughout the app, ensuring only one database instance exists. 3, Repository Provider: It creates and
provides the BookRepository instance that application components can use to interact with data.

11

Add the Application Class and use the Graph object

Add a new Class extend from Application class, and register the application to the
AndroidManifest.xml file

BookListApp.kt AndroidManifest.xml/
class BookListApp:Application() { o
override fun onCreate() { <application _
super.onCreate() android:name=".BookListApp"

- - android:allowBackup="true"
Graph.provide(this) android.dataExtractionRules="@xml/data_extraction_rules"
} android:fullBackupContent="@xml/backup_rules"

i android:icon="@mipmapl/ic_launcher"

12

Use the Graph repository in BookViewModel

Graph.kt

class BookViewModel(
|private val bookRepository: BookRespository = Graph.bookRespository
). ViewModel() {

var bookTitleState by mutableStateOf("")
var bookAuthorState by mutableState Of("")

13

Add Boo
status INTo

AddEditDetailView.kt

A

fun AddEditDetailView(

id: Long,
viewModel: BookViewModel,
navController: NavController

< action and using Snackbars to show the
: _AddEditDetailView.kt

Button(onClick = {

if(viewModel.bookTitleState.isNotEmpty()&&
viewModel.bookAuthorState.isNotEmpty()&&
viewModel.booklsbnState.isNotEmpty()){
if(id '1=0L){

val snackMessage = remember{
mutableState Of("")

}

val scope = rememberCoroutineScope()

val snackbarHostState = remember { SnackbarHostState() }

Scaffold(
topBar = {

AppBarView(title = if(id != OL) "Update Book info" else "Add New
Book™)

{navController.navigateUp()}

1

snackbarHost = { SnackbarHost(snackbarHostState) }

{

telse {
viewModel.addBook(
Book(
title = viewModel.bookTitleState.trim(),
Isbn = viewModel.booklsbnState.trim(),
author = viewModel.bookAuthorState.trim()

)

)
snackMessage.value = "Book has been recorded"
}
telsef
snackMessage.value = "Enter fields to record a Book."

}

scope.launch {
snackbarHostState.showSnackbar(snackMessage.value)
navController.navigateUp()

14

Read the data from database and display

HomelView.kt
@Composable
fun HomeView(modifier: Modifier,
navController: NavController,
viewModel: BookViewModel
i
Scaffold(
modifier = modifier,
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {
FloatingActionButton(
onClick = {navController.navigate(Screen.AddScreen.route)},
modifier = Modifier.padding(all = 20.dp),
) {
Icon(
imageVector = Icons.Default.Add, contentDescription = "add button"
)
}
}
) {
val booklist = viewModel.getAllBooks.collectAsState(initial = listOf())
LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {
items(booklist.value){
book -> Bookltem(book = book) { }
}
}
}
}

15

Attach the action for the card, move it to the edit view.

HomeView. kt

Scaffold(
modifier = modifier,
topBar ={ AppBarView(title="Book List") },
floatingActionButton = {
FloatingActionButton(
onClick = {navController.navigate(Screen.AddScreen.route + "/0L")},
moditier = Moditier.padding(all = 20.dp),
) {
Icon(
imageVector = Icons.Default.Add, contentDescription = "add button”

)
}

}

) {
val booklist = viewModel.getAllBooks.collectAsState(initial = listOf())

LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {
items(booklist.value){
book -> Bookltem(book = book) {
val id = book.id
navController.navigate(Screen.AddScreen.route + "/$id")

P

S0y @ B G40

< Update Book info

= Title

Book List

bbb
EEE The fundamental of Android

— Author

The fundamental of Android
Mary

Mary .
948123456789 Click)

948-123456789

Update Book Info

Navigation.kt

composable(Screen.HomeScre\em(oute){ HomeView(modifier,navController,viewModel

composable(Screen.AddScreen.route + "/{id}",

arguments = li
gument("id"){
type = NavType.LongType
defaultValue = OL
nullable = false

}

)

Hentry->

val id = if(entry.arguments != null) entry.arguments!!.getLong("id") else OL
AddEditDetailView(id = id, viewModel = viewModel, navController=navController)

}

Attach the action for the card, move it to the edit view.

AddEditDetailView.kt

fun AddEditDetailView(
id: Long,
viewModel: BookViewModel,
navController: NavController
A
val snackMessage = remember{
mutableState Of("")
}
val scope = rememberCoroutineScope()
val snackbarHostState = remember { SnackbarHostState() }

if (id = OL){
val book = viewModel.getBookByld(id).collectAsState(initial = Book(OL,"™,"™,"")
viewModel.bookTitleState = book.value.title
viewModel.booklsbnState = book.value.isbn
viewModel.bookAuthorState = book.value.author

telsef
viewModel.bookTitleState =
viewModel.booklsbnState =
viewModel.bookAuthorState =

}

Scaffold(
topBar = {

17

Update the Existing Book info

AddEditDetailView. kt

Button(onClick = {
if(viewModel.bookTitleState.isNotEmpty()&&
viewModel.bookAuthorState.isNotEmpty()&&
viewModel.booklsbnState.isNotEmpty() {
if(id 1=0L){
viewModel.updateBook(
Book(
id = id,
title = viewModel.bookTitleState.trim(),
iIsbn = viewModel.booklsbnState.trim(),
author = viewModel.bookAuthorState.trim()

)
)

snackMessage.value = "Book info has been updated"
Telse {
viewModel.addBook(
Book(
title = viewModel.bookTitleState.trim(),
iIsbn = viewModel.booklsbnState.trim(),

18

Swipe to delete the data card

dismissState
_— to hold swipe

HomeView. kt
LazyColumn(modifier = Modifier.fillMaxSize().padding(i
items(booklist,value){
book ->

var dismissState = rememberSwipeToDismissBoxState(
confirmValueChange = { dismissValue ->

when (dismissValde){
SwipeToDismissBoxValue.EndToStart -> {

viewModel.deleteBoo
true

}

else-> false

cinfirmValueChange
is called when swipe
reaches threshold.

state.

If swiped End—Start (i.e., right-to-left), it calls
viewModel.deleteBook(book) and returns true
(which triggers the dismissal animation).

delete icon) behind t

you swipe.Only allow
from end to start

(enableDismissFrom
= true).background(

SwipeToDismissBox(—

state = dismissState,
enableDismissFromStartToEnd = false,
enableDismissFromEndToStart = true,

backgroundContent = {
Carel \ A full-size Card wit
moc_llfler - MOd'fler aligned red trash ic
fillMaxSize() appears as you swi
.padding(8.dp)
) {
Column(
modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.End,
verticalArrangement = Arrangement.Center
) {
Icon(
imageVector = Icons.Default.Delete,
contentDescription = "Delete",
tint = Color.Red,
modifier = Modifier
.padding(end = 24.dp)
.Size(36.dp)
)
}
}
}
) {
Bookltem(book = book){
val id = book.id
navController.navigate(Screen.AddScreen.route + "/$id")
}

Renders a background (the red

he item as
s swiping

EndToStart
ontent

h a right-
on that
pe.

}

	スライド 1: Mobile Application Development
	スライド 2: Use the SQLite and Room to manage the data in Local storage
	スライド 3: Add the navigation dependencies
	スライド 4: Change the data class to data Entity
	スライド 5: Accessing data using Room DAOs
	スライド 6: Accessing data using Room DAOs
	スライド 7: Create the BookDao file
	スライド 8: Create a database file and register the Dao
	スライド 9: Create a Repository to register the function from Dao
	スライド 10: Use Dispatchers and lateinit Var in ViewModel
	スライド 11: Use Graph to initialize the database
	スライド 12: Add the Application Class and use the Graph object
	スライド 13: Use the Graph repository in BookViewModel
	スライド 14: Add Book action and using Snackbars to show the status info
	スライド 15: Read the data from database and display
	スライド 16: Attach the action for the card, move it to the edit view.
	スライド 17: Attach the action for the card, move it to the edit view.
	スライド 18: Update the Existing Book info
	スライド 19: Swipe to delete the data card

