
Mobile Application
Development

Week11 Use Room Database, DAO, @Entity

Mobile Application Development | week11

1

Use the SQLite and Room to manage the
data in Local storage

SQLite is a free and open-source relational database engine written in
the C programming language. It is not a standalone app; rather, it is a
library that software developers embed in their apps. As such, it belongs
to the family of embedded databases. It is the most widely deployed
database engine, as it is used by several of the top web browsers,
operating systems, mobile phones, and other embedded systems.

2

https://en.wikipedia.org/wiki/SQLite

The Room persistence library provides an abstraction layer over
SQLite to allow for more robust database access while harnessing the full
power of SQLite.

https://developer.android.com/jetpack/androidx/releases/room

plugins {

 alias(libs.plugins.android.application)

 alias(libs.plugins.kotlin.android)

 alias(libs.plugins.kotlin.compose)

 id("androidx.room")

 id("com.google.devtools.ksp")

}

plugins {

 alias(libs.plugins.android.application) apply false

 alias(libs.plugins.kotlin.android) apply false

 alias(libs.plugins.kotlin.compose) apply false

 val room_version = "2.7.1"

 id("androidx.room") version "$room_version" apply false

 id("com.google.devtools.ksp") version "2.1.20-2.0.0" apply false

}

Add the navigation dependencies
• Add the dependency in your build.gradle files

• (project-level) and (app-level)

3

dependencies {

 val room_version = "2.7.1"

implementation("androidx.room:room-runtime:$room_version")

 ksp("androidx.room:room-compiler:$room_version")

implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.10.2")

Change the data class to data Entity

4

@Entity(tableName = "book-table")

data class Book(

 @PrimaryKey(autoGenerate = true)

 val id: Long = 0L,

 @ColumnInfo(name="book-title")

 val title: String="",

 @ColumnInfo(name="book-isbn")

 val isbn: String="",

 @ColumnInfo(name="book-author")

 val author: String=""

)

Book.kt

Accessing data using Room DAOs
• When you use the Room persistence

library to store your app's data, you
interact with the stored data by defining
data access objects, or DAOs. Each DAO
includes methods that offer abstract
access to your app's database. At
compile time, Room automatically
generates implementations of the DAOs
that you define.

• By using DAOs to access your app's
database instead of query builders or
direct queries, you can preserve
separation of concerns, a critical
architectural principle. DAOs also make
it easier for you to mock database
access when you test your app.

5https://developer.android.com/training/data-storage/room/accessing-data

Accessing data using Room DAOs

• Room Entity
• Define an entity to represent the object to be saved
• Each entity corresponds to a table in the associated Room database, and

each instance of the entity represents a data row in the corresponding table

• Room DAO
• Define a Data Access Object (DAO) to operate on the data to be saved
• Each DAO has methods that enable abstract access to the application's

database
• Automatically generates the implementation of the DAO defined at compile

time

• Room Database class
• Serves as the main access point for basic connections to the application's

persistent data, holding the database

6

Create the BookDao file

7

@Dao

abstract class BookDao {

 @Insert(onConflict = OnConflictStrategy.IGNORE)

 abstract fun addBook(bookEntity: Book)

 @Query("select * from `book-table`")

 abstract fun getAllBook(): Flow<List<Book>>

 @Update

 abstract suspend fun updateBook(bookEntity: Book)

 @Delete

 abstract suspend fun deleteBook(bookEntity: Book)

 @Query("Select * from `book-table` where id=:id")

 abstract fun getBookById(id:Long): Flow<Book>

}

BookDao.kt

Create a database file and register the Dao

8https://developer.android.com/training/data-storage/room

@Database(

 entities = [Book::class],

 version = 1,

 exportSchema = false

)

abstract class BookDatabase : RoomDatabase() {

 abstract fun bookDao(): BookDao

}

BookDatabase.kt

Create a Repository to register the function from Dao

9

class BookRespository(private val bookDao: BookDao) {

 suspend fun addBook(book:Book){

 bookDao.addBook(book)

 }

 fun getBooks(): Flow<List<Book>> = bookDao.getAllBook()

 fun getBookById(id:Long) :Flow<Book> {

 return bookDao.getBookById(id)

 }

 suspend fun updateBook(book:Book) {

 bookDao.updateBook(book)

 }

 suspend fun deleteBook(book: Book){

 bookDao.deleteBook(book)

 }

}

BookRespository.kt

Use Dispatchers and lateinit Var in ViewModel

10

class BookViewModel(

 private val bookRepository: BookRespository

): ViewModel() {

 var bookTitleState by mutableStateOf("")

…

 lateinit var getAllBooks: Flow<List<Book>>

 init {

 viewModelScope.launch {

 getAllBooks = bookRepository.getBooks()

 }

 }

 fun getBookById(id:Long):Flow<Book>{

 return bookRepository.getBookById(id)

 }

 fun addBook(book: Book){

 viewModelScope.launch(Dispatchers.IO) {

 bookRepository.addBook(book=book)

 }

 }

 fun updateBook(book: Book){

 viewModelScope.launch(Dispatchers.IO) {

 bookRepository.updateBook(book=book)

 }

 }

 fun deleteBook(book: Book){

 viewModelScope.launch(Dispatchers.IO) {

 bookRepository.deleteBook(book=book)

 }

 }

lateinit var is a Kotlin modifier that allows you to declare non-null properties
without initializing them at declaration time. It essentially tells the compiler: "I
promise to initialize this property before using it."
In the example, getAllBooks is declared as a non-null Flow<List<Book>> that
will be initialized sometime after the BookViewModel is created.

Dispatchers.IO is specifically optimized for I/O-bound tasks such as:
1,Reading or writing files. 2, Making network requests. 3, Querying
databases. 4, Other blocking I/O operations.

These methods provide the CRUD (Create, Read, Update, Delete) operations
for the application:

BookViewModel.kt

Use Graph to initialize the database

11

Create a new file of Graph object

object Graph {

 lateinit var database: BookDatabase

 val bookRespository by lazy {

 BookRespository(bookDao = database.bookDao())

 }

 fun provide(context: Context){

 database = Room.databaseBuilder(context,BookDatabase::class.java,"booklist.db").build()

 }

}

BookDatabase.kt

The Graph object in this code represents a simple dependency injection container (also called a service locator) that
manages database-related dependencies throughout the Android application. The Graph singleton serves several
important functions:
1, Dependency Container: It acts as a central location for creating, storing, and providing access to application
dependencies (database and repository instances). 2, Database Provider: It initializes and provides access to the Room
database throughout the app, ensuring only one database instance exists. 3, Repository Provider: It creates and
provides the BookRepository instance that application components can use to interact with data.

This creates a lazy property for
bookRespository. It means bookRespository
won’t be created until it’s first accessed.It
creates an instance of BookRespository and
injects bookDao from the BookDatabase.

This function initializes the
database using Room's
databaseBuilder.It tells Room to
build a BookDatabase object
using the given context and the
name "booklist.db" for the SQLite
file.

Add the Application Class and use the Graph object

12

class BookListApp:Application() {

 override fun onCreate() {

 super.onCreate()

 Graph.provide(this)

 }

}

Add a new Class extend from Application class, and register the application to the
AndroidManifest.xml file

BookListApp.kt

<application

 android:name=".BookListApp"

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"

AndroidManifest.xml

Use the Graph repository in BookViewModel

13

class BookViewModel(

 private val bookRepository: BookRespository = Graph.bookRespository

): ViewModel() {

 var bookTitleState by mutableStateOf("")

 var bookAuthorState by mutableStateOf("")

…

Graph.kt

Add Book action and using Snackbars to show the
status info

14

fun AddEditDetailView(

 id: Long,

 viewModel: BookViewModel,

 navController: NavController

){

 val snackMessage = remember{

 mutableStateOf("")

 }

 val scope = rememberCoroutineScope()

 val snackbarHostState = remember { SnackbarHostState() }

 Scaffold(

 topBar = {

 AppBarView(title = if(id != 0L) "Update Book info" else "Add New

Book")

 {navController.navigateUp()}

 },

 snackbarHost = { SnackbarHost(snackbarHostState) }

)

 {

Button(onClick = {

 if(viewModel.bookTitleState.isNotEmpty()&&

 viewModel.bookAuthorState.isNotEmpty()&&

 viewModel.bookIsbnState.isNotEmpty()){

 if(id !=0L){

 }else {

 viewModel.addBook(

 Book(

 title = viewModel.bookTitleState.trim(),

 isbn = viewModel.bookIsbnState.trim(),

 author = viewModel.bookAuthorState.trim()

)

)

 snackMessage.value = "Book has been recorded"

 }

 }else{

 snackMessage.value = "Enter fields to record a Book."

 }

 scope.launch {

 snackbarHostState.showSnackbar(snackMessage.value)

 navController.navigateUp()

 }

}){

AddEditDetailView.kt

AddEditDetailView.kt

Read the data from database and display

15

@Composable

fun HomeView(modifier: Modifier,

 navController: NavController,

 viewModel: BookViewModel

){

 Scaffold(

 modifier = modifier,

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {navController.navigate(Screen.AddScreen.route)},

 modifier = Modifier.padding(all = 20.dp),

) {

 Icon(

 imageVector = Icons.Default.Add, contentDescription = "add button"

)

 }

 }

) {

 val booklist = viewModel.getAllBooks.collectAsState(initial = listOf())

 LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {

 items(booklist.value){

 book -> BookItem(book = book) { }

 }

 }

 }

}

HomeView.kt

Scaffold(

 modifier = modifier,

 topBar ={ AppBarView(title="Book List") },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {navController.navigate(Screen.AddScreen.route + "/0L")},

 modifier = Modifier.padding(all = 20.dp),

) {

 Icon(

 imageVector = Icons.Default.Add, contentDescription = "add button"

)

 }

 }

) {

 val booklist = viewModel.getAllBooks.collectAsState(initial = listOf())

 LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {

 items(booklist.value){

 book -> BookItem(book = book) {

 val id = book.id

 navController.navigate(Screen.AddScreen.route + "/$id")

 }

 }

 }

Attach the action for the card, move it to the edit view.

16

Click

HomeView.kt

composable(Screen.HomeScreen.route){ HomeView(modifier,navController,viewModel)}

 composable(Screen.AddScreen.route + "/{id}",

 arguments = listOf(

 navArgument("id"){

 type = NavType.LongType

 defaultValue = 0L

 nullable = false

 }

)

){entry->

 val id = if(entry.arguments != null) entry.arguments!!.getLong("id") else 0L

 AddEditDetailView(id = id, viewModel = viewModel, navController=navController)

 }

}

Navigation.kt

17

Attach the action for the card, move it to the edit view.

fun AddEditDetailView(

 id: Long,

 viewModel: BookViewModel,

 navController: NavController

){

 val snackMessage = remember{

 mutableStateOf("")

 }

 val scope = rememberCoroutineScope()

 val snackbarHostState = remember { SnackbarHostState() }

 if (id != 0L){

 val book = viewModel.getBookById(id).collectAsState(initial = Book(0L,"","",""))

 viewModel.bookTitleState = book.value.title

 viewModel.bookIsbnState = book.value.isbn

 viewModel.bookAuthorState = book.value.author

 }else{

 viewModel.bookTitleState = ""

 viewModel.bookIsbnState = ""

 viewModel.bookAuthorState = ""

 }

 Scaffold(

 topBar = {

AddEditDetailView.kt

Update the Existing Book info

18

Button(onClick = {

 if(viewModel.bookTitleState.isNotEmpty()&&

 viewModel.bookAuthorState.isNotEmpty()&&

 viewModel.bookIsbnState.isNotEmpty()){

 if(id !=0L){

 viewModel.updateBook(

 Book(

 id = id,

 title = viewModel.bookTitleState.trim(),

 isbn = viewModel.bookIsbnState.trim(),

 author = viewModel.bookAuthorState.trim()

)

)

 snackMessage.value = "Book info has been updated"

 }else {

 viewModel.addBook(

 Book(

 title = viewModel.bookTitleState.trim(),

 isbn = viewModel.bookIsbnState.trim(),

…

AddEditDetailView.kt

Swipe to delete the data card

19

LazyColumn(modifier = Modifier.fillMaxSize().padding(it)) {

 items(booklist.value){

 book ->

 var dismissState = rememberSwipeToDismissBoxState(

 confirmValueChange = { dismissValue ->

 when (dismissValue){

 SwipeToDismissBoxValue.EndToStart -> {

 viewModel.deleteBook(book)

 true

 }

 else-> false

 }

 }

)

SwipeToDismissBox(

 state = dismissState,

 enableDismissFromStartToEnd = false,

 enableDismissFromEndToStart = true,

 backgroundContent = {

 Card(

 modifier = Modifier

 .fillMaxSize()

 .padding(8.dp)

) {

 Column(

 modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.End,

 verticalArrangement = Arrangement.Center

) {

 Icon(

 imageVector = Icons.Default.Delete,

 contentDescription = "Delete",

 tint = Color.Red,

 modifier = Modifier
 .padding(end = 24.dp)

 .size(36.dp)

)

 }

 }

 }

) {

 BookItem(book = book){

 val id = book.id

 navController.navigate(Screen.AddScreen.route + "/$id")

 }

}

dismissState
to hold swipe
state.

cinfirmValueChange
is called when swipe
reaches threshold.

If swiped End→Start (i.e., right-to-left), it calls
viewModel.deleteBook(book) and returns true
(which triggers the dismissal animation).

Renders a background (the red
delete icon) behind the item as
you swipe.Only allows swiping
from end to start
(enableDismissFromEndToStart
= true).backgroundContent

A full-size Card with a right-
aligned red trash icon that
appears as you swipe.

HomeView.kt

	スライド 1: Mobile Application Development
	スライド 2: Use the SQLite and Room to manage the data in Local storage
	スライド 3: Add the navigation dependencies
	スライド 4: Change the data class to data Entity
	スライド 5: Accessing data using Room DAOs
	スライド 6: Accessing data using Room DAOs
	スライド 7: Create the BookDao file
	スライド 8: Create a database file and register the Dao
	スライド 9: Create a Repository to register the function from Dao
	スライド 10: Use Dispatchers and lateinit Var in ViewModel
	スライド 11: Use Graph to initialize the database
	スライド 12: Add the Application Class and use the Graph object
	スライド 13: Use the Graph repository in BookViewModel
	スライド 14: Add Book action and using Snackbars to show the status info
	スライド 15: Read the data from database and display
	スライド 16: Attach the action for the card, move it to the edit view.
	スライド 17: Attach the action for the card, move it to the edit view.
	スライド 18: Update the Existing Book info
	スライド 19: Swipe to delete the data card

