
Mobile Application
Development

Week12 Desing a Music App by Scaffold composable

Yi SUN

Kobe Institute of Computing

Mobile Application Development | week12

1

The Scaffold composable

The Scaffold composable provides a straightforward API you can use to
quickly assemble your app's structure according to Material Design
guidelines. Scaffold accepts several composables as parameters. Among
these are the following:

topBar: The app bar across the top of the screen.

bottomBar: The app bar across the bottom of the screen.

floatingActionButton: A button that hovers over the bottom-right corner of
the screen that you can use to expose key actions.

You can also pass Scaffold content as you would to other containers. It
passes an innerPadding value to the content lambda that you can then use
in child composables.

2https://developer.android.com/develop/ui/compose/components/scaffold

dependencies {

 val nav_version = "2.9.0"

 implementation("androidx.navigation:navigation-compose:$nav_version")

 val compose_version ="1.8.1"

 implementation("androidx.compose.ui:ui:$compose_version")

 implementation("androidx.compose.material:material:$compose_version")

 implementation("androidx.compose.ui:ui-tooling-preview:$compose_version")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

Add the navigation dependencies
• Add the dependency in your app-level build.gradle files

3

Design the main page

• Create a MainView.kt file at ui package

4

fun MainView(){

 val scaffoldState: ScaffoldState = rememberScaffoldState()

 val scope: CoroutineScope = rememberCoroutineScope()

 Scaffold(

 topBar = {

 TopAppBar(title = { Text("Home")},

 navigationIcon = { IconButton(onClick = {

 scope.launch {

 scaffoldState.drawerState.open()

 }

 }) {

 Icon(imageVector = Icons.Default.AccountCircle, contentDescription = "Menu")

 }})

 }

) { paddingValues ->

 Text("text", modifier = Modifier.padding(paddingValues))

 }

}

MainView.kt

Change the MainActivity.kt as an Entry point

• Use the Surface to load the MainView() as the main view.

5

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 MusicAppUITheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 MainView()

 }

 }

 }

 }

}

The main view

MainActivity.kt

Define the Screen object
• Add a Screen.kt file to make the definition of the object at

the screen.

6

sealed class Screen(val title:String, val route: String) {

 sealed class DrawerScreen(val dTitle:String, val dRoute:String, @DrawableRes val icon: Int)

 : Screen(dTitle,dRoute){

 object Account: DrawerScreen(

 "Account",

 "account",

 R.drawable.baseline_account_box_24

)

 object Subscription: DrawerScreen(

 "Subscription",

 "subscribe",

 R.drawable.baseline_library_music_24

)

 object AddAccount: DrawerScreen(

 "Add Account",

 "add_account",

 R.drawable.baseline_person_add_alt_1_24

)

 }

}

sealed class ScreenDeclares a closed hierarchy
of “screens” in your app.
Each subclass must be defined in the same file.
Carries two properties:
title: String – human-readable name
route: String – navigation route/key

Nested sealed class DrawerScreen
Inherits from Screen by calling Screen(dTitle,
dRoute).
Adds one more property:
@DrawableRes val icon: Int – a compile-time-
checked drawable resource ID
Used to represent items in a navigation drawer.

object declarations
Account, Subscription, AddAccount are singleton
instances of DrawerScreen.
Each provides its own dTitle, dRoute, and icon.
Being object, they’re instantiated once and can be
compared by identity.

Screen.kt

Add the Drawable Resource
• Click the Menu->Tools->Resource Manager

• Click the + -> Vector Asset

• Click the Clip art: Icon

• Find the Clip you want use by keyword.

7

Add the reuseable compose of DrawerItem in MainView.kt

8

@Composable

fun DrawerItem(

 selected: Boolean,

 item: Screen.DrawerScreen,

 onDrawerItemClicked : () -> Unit

){

 val background = if (selected) Color.DarkGray else Color.White

 Row(

 Modifier

 .fillMaxWidth()

 .padding(horizontal = 8.dp, vertical = 16.dp)

 .background(background)

 .clickable {

 onDrawerItemClicked()

 }) {

 Icon(

 painter = painterResource(id = item.icon),

 contentDescription = item.dTitle,

 Modifier.padding(end = 8.dp, top = 4.dp)

)

 Text(

 text = item.dTitle,

 style = MaterialTheme.typography.titleMedium,

)

 }

}

selected: Whether this item is currently
active/highlighted.
item: A Screen.DrawerScreen object carrying title,
route, and icon.
onDrawerItemClicked: Lambda to invoke when the row
is tapped.

A horizontal row with an icon on the left, the title
next to it, and a background that changes color
when selected == true

MainView.kt

Making the drawer appear

9

fun MainView(){

 val scaffoldState: ScaffoldState = rememberScaffoldState()

 val scope: CoroutineScope = rememberCoroutineScope()

 val controller: NavController = rememberNavController()

 val navBackStackEntry by controller.currentBackStackEntryAsState()

 val currentRoute = navBackStackEntry?.destination?.route

 val title = remember{

 mutableStateOf("")

 }

 Scaffold(

 topBar = {

 TopAppBar(title = { Text("Home")},

…………

 {

 Icon(imageVector = Icons.Default.AccountCircle, contentDescription = "Menu")

 }})

 }, scaffoldState = scaffoldState,

 drawerContent = {

 LazyColumn(Modifier.padding(16.dp)) {

 items(screensInDrawer){

 item ->

 DrawerItem(selected = currentRoute == item.dRoute, item = item) {

 scope.launch {

 scaffoldState.drawerState.close()

 }

 if(item.dRoute == "add_account"){

 }else{

 controller.navigate(item.dRoute)

 title.value = item.dTitle

 }

…

val screensInDrawer = listOf(

 Screen.DrawerScreen.Account,

 Screen.DrawerScreen.Subscription,

 Screen.DrawerScreen.AddAccount

)

MainView.kt

Screen.kt

Sets up Jetpack Navigation to switch
between screens.

Observes the current back-stack entry
so you can know which screen (route)
is active.

Holds the current screen title; updated when the
user selects a drawer item.

selected becomes true when the drawer route
matches the current route.
Click behavior:
Close the drawer.
If it’s not the special “add_account” route, navigate
and update the title.

Setting up the MainViewModel

10

class MainViewModel:ViewModel() {

 private val _currentScreen: MutableState<Screen> = mutableStateOf(Screen.DrawerScreen.AddAccount)

 val currentScreen: MutableState<Screen> get() = _currentScreen

 fun setCurrentScreen(screen:Screen){

 _currentScreen.value = screen

 }

}

• Create a MainViewModel.kt file at ui package

Setting up the Navigation in MainView

11

fun MainView(){

 val scaffoldState: ScaffoldState = rememberScaffoldState()

 val scope: CoroutineScope = rememberCoroutineScope()

 val viewModel: MainViewModel = viewModel()

 val controller: NavController = rememberNavController()

 val navBackStackEntry by controller.currentBackStackEntryAsState()

 val currentRoute = navBackStackEntry?.destination?.route

 val currentScreen = remember{

 viewModel.currentScreen.value

 } @Composable

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

 NavHost(navController = navController as NavHostController,

 startDestination = Screen.DrawerScreen.AddAccount.route,

 modifier = Modifier.padding(pd)) {

 composable(Screen.DrawerScreen.AddAccount.route){

 }

 composable(Screen.DrawerScreen.Subscription.route){

 }

 }

}

}

) { paddingValues ->

 Navigation(navController = controller,viewModel = viewModel, pd = paddingValues)

 }

}

MainView.kt

Obtains (and remembers) an instance of your
MainViewModel scoped to this composable’s lifecycle.
You can now read or observe its data.

viewModel.currentScreen is presumably a
MutableState<Screen> (or StateFlow<Screen>).
Wrapping viewModel.currentScreen.value in remember
{ … } means currentScreen is set once when MainView
first runs, and won’t update thereafter.

When you use Scaffold, Compose will calculate inner insets (to
account for your TopAppBar, any bottom bars, or the open drawer)
and pass them into this lambda as a PaddingValues object.

composable(route)Defines a destination in the navigation graph keyed by its
route string.
Lambda bodyThe UI that should render when navController.navigate(route)
brings you to this screen.

Add Account Dialog
• Create a AccountDailog.kt file at ui.theme package

12

@Composable

fun AccountDialog(dialogOpen: MutableState<Boolean>){

 if(dialogOpen.value){

 AlertDialog(

 onDismissRequest = {

 dialogOpen.value = false

 },

 confirmButton = {

 TextButton(onClick = {

 dialogOpen.value = false

 }) {

 Text("Confirm")

 }

 },

 dismissButton = {

 TextButton(onClick = {

 dialogOpen.value = false

 }) {

 Text("Dismiss")

 }

 },

 title = {

 Text("Add Account")

 },

text = {

 Column(modifier = Modifier.wrapContentHeight().padding(top = 16.dp),

 verticalArrangement = Arrangement.Center

) {

 TextField(value = "", onValueChange = {

 // Todo

 }, modifier = Modifier.padding(top = 16.dp),

 label = {Text(text="Email")})

 TextField(value = "", onValueChange = {

 }, modifier = Modifier.padding(top = 8.dp),

 label = { Text(text = "Password")})

 }

},

modifier = Modifier.fillMaxWidth()

 .background(MaterialTheme.colors.primarySurface)

 .padding(8.dp),

shape = RoundedCornerShape(5.dp),

backgroundColor = Color.White,

properties = DialogProperties(

 dismissOnBackPress = true,

 dismissOnClickOutside = true

)

AccountDialog.kt

Add the openDialog event at MainView

13

val controller: NavController = rememberNavController()

val navBackStackEntry by controller.currentBackStackEntryAsState()

val currentRoute = navBackStackEntry?.destination?.route

val dialogOpen = remember{

 mutableStateOf(false)

}

) { paddingValues ->

 Navigation(navController = controller,viewModel = viewModel, pd = paddingValues)

 AccountDialog(dialogOpen = dialogOpen)

 }

}

MainView.kt

DrawerItem(selected = currentRoute==item.dRoute, item = item){

scope.launch {

scaffoldState.drawerState.close()

}

if(item.dRoute == "add_account"){

dialogOpen.value = true

}else{

controller.navigate(item.dRoute)

title.value = item.dTitle

}

}

Add a AccountView

14

Create a AccountView.kt file at ui.theme package

fun AccountView(){

 Column(

 modifier = Modifier.fillMaxSize().padding(16.dp)

){

 Row (

 modifier = Modifier.fillMaxWidth(),

 horizontalArrangement = Arrangement.SpaceBetween

){

 Row() {

 Icon(imageVector = Icons.Default.AccountCircle,

 contentDescription = "Account",

 modifier = Modifier.padding(end = 8.dp)

)

 Column {

 Text("Yi Sun")

 Text("@ysin")

 }

 }

 IconButton(onClick = {}) {

 Icon(imageVector = Icons.AutoMirrored.Filled.KeyboardArrowRight,

 contentDescription = null)

 }

 }

 Row(modifier = Modifier.padding(top = 16.dp)){

 Icon(

 painter = painterResource(id = R.drawable.baseline_music_video_24),

 contentDescription = "My Music",

 modifier = Modifier.padding(end = 8.dp)

)

 Text(text = "My Music")

 }

 }

}

AccountView.kt

@Composable

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

 NavHost(navController = navController as NavHostController,

 startDestination = Screen.DrawerScreen.AddAccount.route,

 modifier = Modifier.padding(pd)) {

 composable(Screen.DrawerScreen.AddAccount.route){

 }

 composable(Screen.DrawerScreen.Subscription.route){

 }

 composable(Screen.DrawerScreen.Account.route){

 AccountView()

 }

 }

}

Scaffold(

 topBar = {

 TopAppBar(title = { Text(title.value)},

 navigationIcon = { IconButton(onClick = {

 scope.launch {

 scaffoldState.drawerState.open()

MainView.kt

MainView.kt

Add a Subscription View

15

Create a Subscription.kt file at ui.theme package

fun Subscription(){

 Column(

 modifier = Modifier.height(200.dp),

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text = "Manage Subscription")

 Card(modifier = Modifier.padding(8.dp), elevation = 4.dp) {

 Column(modifier = Modifier.padding(8.dp)) {

 Column() {

 Text(text = "Musical")

 Row(Modifier.fillMaxWidth(), horizontalArrangement = Arrangement.SpaceBetween){

 Text(text = "Free Tier")

 TextButton(onClick = { }) {

 Row {

 Text(text = "See All Plans")

 Icon(imageVector = Icons.AutoMirrored.Filled.KeyboardArrowRight,

 contentDescription = "See All Plans"

)

 }

 }

 }

 }

 Divider(thickness = 1.dp, modifier = Modifier.padding(horizontal = 8.dp))

 Row(Modifier.padding(vertical = 16.dp)) {

 Icon(imageVector = Icons.Default.AccountBox, contentDescription = "Get a Plan")

 Text(text = "Get a Plan")

 }

fun Navigation(navController: NavController, viewModel:

MainViewModel, pd:PaddingValues){

 NavHost(navController = navController as NavHostController,

 startDestination = Screen.DrawerScreen.AddAccount.route,

 modifier = Modifier.padding(pd)) {

 composable(Screen.DrawerScreen.AddAccount.route){

 }

 composable(Screen.DrawerScreen.Subscription.route){

 Subscription()

 }

 composable(Screen.DrawerScreen.Account.route){

 AccountView()

 }

Subscription.kt

MainView.kt

	Slide 1: Mobile Application Development
	Slide 2: The Scaffold composable
	Slide 3: Add the navigation dependencies
	Slide 4: Design the main page
	Slide 5: Change the MainActivity.kt as an Entry point
	Slide 6: Define the Screen object
	Slide 7: Add the Drawable Resource
	Slide 8: Add the reuseable compose of DrawerItem in MainView.kt
	Slide 9: Making the drawer appear
	Slide 10: Setting up the MainViewModel
	Slide 11: Setting up the Navigation in MainView
	Slide 12: Add Account Dialog
	Slide 13: Add the openDialog event at MainView
	Slide 14: Add a AccountView
	Slide 15: Add a Subscription View

