Mobile Application Development | week12

\Vobile Application
Development

Weekl?2 Desing a Music App by Scaffold composable

Yi SUN
Kobe Institute of Computing

The Scaffold composable

The Scaffold composable provides a straightforward APl you can use to

quickly assemble your app's structure accordmg to Material Design
uidelines. Scaffold accepts several composables as parameters. Am
ese are the following:

Top app bar

This is an example of a scaffold. It uses the
Scaffold composable's parameters to create a
screen with a simple top app bar, bottom app bar,
and floating action button.

It also contains some basic inner content, such as
this text.

topBar: The app bar across the top of the screen.
bottomBar: The app bar across the bottom of the screen.

floatingActionButton: A button that hovers over the botto
the screen that you can use to expose key actions.

You have pressed the floating action button 4 times.

right corner of

You can also pass Scaffold content as you would to other containers. |
passes an innerPadding value to the content lambda that you can then us
In child composables.

Bottom app bar

https://developer.android.com/develop/ui/compose/components/scaffold)

Add the navigation dependencies

« Add the dependency in

your app-level build.gradle files

v (&7 Gradle Scripts
&2 build.gradlekts (Project: MyLibraryApp)

EE?; build.gradle kts (Module :app)

= proguard-rules.pro (ProGuard Rules form
£33 gradle.properties (Project Properties)

£33 gradle-wrapper.properties (Gradle Version)
libs.versions.toml (Version Catalog)

£33 local.properties (SDK Location)

£ settings.gradlekts (Project Settings)

dependencies {

val nav_version ="2.9.0"
implementation("androidx.navigation:navigation-compose:$nav_version")

val compose_version ="1.8.1"
iImplementation("androidx.compose.ui:ui:$compose_version")
Implementation("androidx.compose.material:material:$compose_version")
implementation("androidx.compose.ui:ui-tooling-preview:$compose_version")

implementation(libs.androidx.core.ktx)

implementation(libs.androidx.lifecycle.runtime.ktx)

Design the main page

e Create a MainView.kt file at ui package

MainView.kt

fun MainView(){
val scaffoldState: ScaffoldState = rememberScaffoldState()
val scope: CoroutineScope = rememberCoroutineScope()

Scaffold(
topBar = {
TopAppBar(title = { Text("Home")},
navigationlcon = { lconButton(onClick = {
scope.launch {
scaffoldState.drawerState.open()
}

b

Icon(imageVector = Icons.Default.AccountCircle, contentDescription = "Menu")

)
}

) { paddingValues ->
Text("text", modifier = Modifier.padding(paddingValues))

}

}

v (2] ug.ac.uict musicappui

v [ui
> [theme
[< MainView.kt

(@ MainActivity

Change the MainActivity.kt as an Entry point

« Use the Surface to load the MainView() as the main view.

MainActivity.kt

class MainActivity : ComponentActivity() {
override fun onCreate(savedinstanceState: Bundle?) {
super.onCreate(savedlnstanceState)
enableEdgeToEdge()
setContent {
MusicAppUITheme {

Surface(
modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

)
MainView()
}

"

MO A D 3GJ N

8 Home

text

The main view

Define the Screen object

 Add a Screen.kt file to make the definition of the object at
th e SC re e N. sealed class ScreenDeclares a closed hierarchy

of “screens” in your app.

Screen.kt / Each subclass must be defined in the same file.
sealed class Screen(val title:String, val route: String) { Carries two properties:

title: String — human-readable name
_ _ _ . route: String — navigation route/key
sealed class DrawerScreen(val dTitle:String, val dRoute:String, @ DrawableRes val icon: Int)

. Screen(dTitle,dRoute){
object Account: DrawerScreen(
"Account”,
"account",
R.drawable.baseline_account _box_ 24

Nested sealed class DrawerScreen

Inherits from Screen by calling Screen(dTitle,
dRoute).

Adds one more property:

@DrawableRes val icon: Int —a compile-time-
checked drawable resource ID

Used to represent items in a navigation drawer.

)

object Subscription: DrawerScreen(
"Subscription”,
"subscribe",
R.drawable.baseline library _music_24 object declarations

) Account, Subscription, AddAccount are singleton

object AddAccount: DrawerScreen(| , instances of DrawerScreen.

"Add Account", Each provides its own dTitle, dRoute, and icon.
Being object, they're instantiated once and can be
compared by identity.

"add_account",
R.drawable.baseline _person_add alt 1 24

)
}

Add the Drawable Resource

Click the Menu->Tools->Resource Manager

» Click the + -> Vector Asset (eesn)
C @
F

Material Symbols Outlined

e Click the Clip art: Icon &‘ -
]] += g.'_ Filleé

« Find the Clip you want use by keyword. SR e b

e o -

o Two Tone
person pin person pin circle per.

I

5 Resource Manager f

|;?6 + Module: Musii Q- Y i

. Asset type: Clip art Local file (SVG, PSD)
| <[> Drawable Resource File ssetpe @ Clp oee
Befactor BUI|d Rgn IOOIS ch WiﬂdOW ﬂelp : * Mlp Map : Name: baseline_account_box_24
|] Image Asset
. 8 = : Clip art:
nView.kt bulld. [X Device Manager Vector Asset eSelectCipAn
T, SDK Manager Siz& 24 |dp R
() 100%

lct.musicappui Iy
PP s Import Drawables

o Color:
o2 Resource Manager

. nm | Opacity:
annotation.Dranal c3 agp Upgrade Assistant.. * ic_launcher_background

Enable auto mirroring for RTL layout

Drawable 1 version
. Android SDK Upgrade Assistant
‘een(val title:Str

ic_launcher_foreground

Drawable 1 version 2

Add the reuseable compose of Drawerltem in MainView. .kt

MainView.kt

@Composable

fun Drawerltem(-

A

selected: Boolean,
item: Screen.DrawerScreen,
onDrawerltemClicked : () -> Unit

val background = if (selected) Color.DarkGray else Color.White
Row(
Modifier
fillMaxWidth()
.padding(horizontal = 8.dp, vertical = 16.dp)
.background(background)
.clickable {
onDrawerltemClicked()
DA
lcon(
painter = painterResource(id = item.icon),
contentDescription = item.dTitle,
Modifier.padding(end = 8.dp, top = 4.dp)
)
Text(
text = item.dTitle,
style = MaterialTheme.typography.titteMedium,

)

}

selected: Whether this item is currently
active/highlighted.

item: A Screen.DrawerScreen object carrying title,
route, and icon.

onDrawerltemClicked: Lambda to invoke when the row
is tapped.

A horizontal row with an icon on the left, the title

next to it, and a background that changes color
/ when selected == true

NMaking the drawer appear

MainView.kt

fun MainView(){

val scaffoldState: ScaffoldState = rememberScaffoldState()
val scope: CoroutineScope = rememberCoroutineScope()

val controller: NavController = rememberNavController()
val nayBackStackEntry by controller.currentBackStackEntryAsState()
val currentRoute = navBackStackEntry?.destination?.route

\

val title = remember{
mutableState©f("")

}

Scaffold(
topBar 3 {
TopAppBar(title =

{

Ican(imageVector

Text("Home")},

47

<« Holds th

Icons.Default.AccountCircle, contentDescription = "Menu")

oute, item = item) {

controller.navigate(item.dRoute)
title.value = item.dTitle

Sets u
betwes

Observ
SO you
is activ

user sel

0 Jetpack Navigation to switch
2N screens.

es the current back-stack entry
can know which screen (route)

a)

O .

e current screen title; updated when the
ects a drawer item.

selected becomes true when the drawer route
matches the current route.

Click behavior:

Close the drawer.

If it's not the special “add_account” route, navigate
and update the title.

Screen.kt

val screensinDrawer = listOf(
Screen.DrawerScreen.Account,
Screen.DrawerScreen.Subscription,
Screen.DrawerScreen.AddAccount

Setting up the MainViewModel
e Create a MainViewModel.kt file at ui package

class MainViewModel:ViewModel() {
private val _currentScreen: MutableState<Screen> = mutableStateOf(Screen.DrawerScreen.AddAccount)

val currentScreen: MutableState<Screen> get() = currentScreen

fun setCurrentScreen(screen:Screen){
_currentScreen.value = screen

}
}

10

Setting up the Navigation in MainView

MainView.kt

fun MainView(){
val scaffoldState: ScaffoldState = rememberScaffoldState()
val scope: CoroutineScope = rememberCoroutineScope()

val viewModel: MainViewModel = viewModel()

val controller: NavController = rememberNavController()
val navBackStackEntry by controller.currentBackStackEntryAsState()
val currentRoute = navBackStackEntry?.destination?.route

val currentScreen = remember{
viewModel.currentScreen.value

} 4

}
*) { paddingValues ->

Navigation(navController = controller,viewModel = viewModel, pd = paddingValues

}

} When you use Scaffold, Compose will calculate inner insets (to
account for your TopAppBar, any bottom bars, or the open drawer)
and pass them into this lambda as a PaddingValues object.

@Composable

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

\

Obtains (and remembers) an instance of your
MainViewModel scoped to this composable’s lifecycle.
You can now read or observe|its data.

viewModel.currentScreen is presumably a
MutableState<Screen> (or StateFlow<Screen>).
Wrapping viewModel.currentScreen.value in remember
{ -- } means currentScreen is set once when MainView
first runs, and won’t update thereafter.

NavHost(navController = navController as NavHostController,
startDestination = Screen.DrawerScreen.AddAccount.route,
modifier = Modifier.padding(pd)) {
composable(Screen.DrawerScreen.AddAccount.route){

}

composable(Screen.DrawerScreen.Subscription.route){

}

composable(route)Defines a destination in the navigation graph keyed by its
route string.

Lambda bodyThe Ul that should render when navController.navigate(route)
brings you to this screen. 11

Add Account Dialog

e Create a AccountDailog.kt file at ui.theme package

AccountDialog.kt

@Composable
fun AccountDialog(dialogOpen: MutableState<Boolean>){
if(dialogOpen.value){
AlertDialog(

v [Dkotlin+java
v [2] ug.ac.uict. musicappui
v [Dui
~ [theme

[X AccountDialog.kt

[< Colorkt
[X Themekt
[X Typekt
[X MainView.kt
(@ MainActivity
(@ MainViewModel

onDismissRequest = {
dialogOpen.value = false
|3
confirmButton = {
TextButton(onClick = {
dialogOpen.value = false
DA
Text("Confirm")
}
|3

dismissButton = {
TextButton(onClick = {
dialogOpen.value = false

b

Text("Dismiss")

}
|3
title = {

Text("Add Account")
|3

text ={
Column(modifier = Modifier.wrapContentHeight().padding(top = 16.dp),
verticalArrangement = Arrangement.Center
)
TextField(value =
/I Todo
}, modifier = Modifier.padding(top = 16.dp),
label = {Text(text="Email")})
TextField(value = "™, onValueChange = {

, onValueChange = {

}, modifier = Modifier.padding(top = 8.dp),
label = { Text(text = "Password")})
}

|3
modifier = Modifier.fillMaxWidth()

.background(MaterialTheme.colors.primarySurface)
.padding(8.dp),
shape = RoundedCornerShape(5.dp),
backgroundColor = Color.White,
properties = DialogProperties(
dismissOnBackPress = true,
dismissOnClickOutside = true

)

[< Screenkt

12

Add the openDialog event at MainView

MainView.kt

val controller: NavController = rememberNavController()
val navBackStackEntry by controller.currentBackStackEntryAsState()
val currentRoute = navBackStackEntry?.destination?.route

val dialogOpen = remember{
mutableStateOf(false)

}

Drawerltem(selected = currentRoute==item.dRoute, item = item){
scope.launch {
scaffoldState.drawerState.close()
}

if(item.dRoute == "add_account"){

dialogOpen.value = true

telse{
controller.navigate(item.dRoute)
title.value = item.dTitle

}
}

) { paddingValues ->

Navigation(navController = controller,viewModel = viewModel, pd = paddingValues)
AccountDialog(dialogOpen = dialogOpen)

120990 @ B

E Account

Subscription

Add Account

Email

Password

Dismiss

13

Confirm

Main\tiew-kt

Add a AccountView

Create a AccountView.kt file at ui.theme package
AccountView.kt

@Composable

NavHost(navController = navController as NavHostController,
startDestination = Screen.DrawerScreen.AddAccount.route,
modifier = Modifier.padding(pd)) {
composable(Screen.DrawerScreen.AddAccount.route){

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

: }
func,glcuc;l:]r(\tWew(){ composable(Screen.DrawerScreen.Subscription.route){
modifier = Modifier.fillMaxSize().padding(16.dp) }
" Row (composable(Screen.DrawerScreen.Account.route){

modifier = Modifier.filMaxWidth(), AccountView()
horizontal Arrangement = Arrangement.SpaceBetween }

i J
Row() { }

Icon(imageVector = Icons.Default.AccountCircle,
contentDescription = "Account”, 12349 @ G4
modifier = Modifier.padding(end = 8.dp)

) Accoun _

Column { \ o t'ﬂ 1218 @ 3G
Text("Yi Sur) Bt
Text("@ysin") —> O vi SL-Jn

) } —> @ysin Subscription
IconButton(onClick = {}) { /" i My)vﬂusm
Icon(imageVector = lcons.AutoMirrored.Filled.KeyboardArrowRight, / 24 Add Account
contentDescription = null)
}
b _— MainView.kt
Row(modifier = Modiiier.padding(lop = 16.dp)){
lcon(_ _ : o Scaffold(
painter = painterResource(id = R.drawable-baseline_music_video_24), topBar = {
(rfgcgi‘ir:etrD :e Shﬁggit;?e?;amyingfj:rﬁ - 8.dp) TopAppBar(title = { [Text(title.value)},
) navigationlcon = { IconButton(onClick = {
Text(text = "My Music") scope.launch {
} scaffoldState.drawerState.open()
} 14

Add a Subscription View

Create a Subscription.kt file at ui.theme package
Subscription.kt

© Subscription

fun Subscription(){
Column(
modifier = Modifier.height(200.dp),
horizontalAlignment = Alignment.CenterHorizontally
) {

Text(text = "Manage Subscription")
Card(modifier = Modifier.padding(8.dp), elevation = 4.dp) {
Column(modifier = Modifier.padding(8.dp)) {
Column() {
Text(text = "Musical")
Row(Madifier.fillMaxWidth(), h
Text(text = "Free Tier")
TextButton(onClick ={ }) {
Row {
Text(text = "See All Plans")
Icon(imageVector = Icons.AutoMirrored.Filled.KeyboardArro
contentDescription = "See All Plans"

ntalArrangement = Arrangement.SpaceBetween){

)
}
}
}
}
Divider(thickness = 1.dp, modifier = Modi
Row(Modifier.padding(vertical = 16.
Icon(imageVector = Icons.Default. AccountBox, contentDescription = "Get a Plan”
Text(text = "Get a Plan")

}

ier.padding(horizontal = 8.dp))

/Manage Subscription
M

usical

/Free Tier

BGet a Plan

See All Plans »

MainView.kt

fun Navigation(navController: NavController, viewModel:
MainViewModel, pd:PaddingValues){

NavHost(navController = navController as NavHostController,
startDestination = Screen.DrawerScreen.AddAccount.route,
modifier = Modifier.padding(pd)) {
composable(Screen.DrawerScreen.AddAccount.route){

}

composable(Screen.DrawerScreen.Subscription.route){
|Su530r|pf|on(5 |
}

composable(Screen.DrawerScreen.Account.route){
AccountView()

}

15

	Slide 1: Mobile Application Development
	Slide 2: The Scaffold composable
	Slide 3: Add the navigation dependencies
	Slide 4: Design the main page
	Slide 5: Change the MainActivity.kt as an Entry point
	Slide 6: Define the Screen object
	Slide 7: Add the Drawable Resource
	Slide 8: Add the reuseable compose of DrawerItem in MainView.kt
	Slide 9: Making the drawer appear
	Slide 10: Setting up the MainViewModel
	Slide 11: Setting up the Navigation in MainView
	Slide 12: Add Account Dialog
	Slide 13: Add the openDialog event at MainView
	Slide 14: Add a AccountView
	Slide 15: Add a Subscription View

