Mobile Application Development | week13

\Vobile Application
Development

Weekl1l3 Desing a Music App by Scaffold composable (2)

Yi SUN
Kobe Institute of Computing

Add the BottomBar to Screen (1)

e« Add the BottomScreen class at Screen.kt

Screen.kt

© Add Account

sealed class Screen(val title:String, val route: String) {

sealed class BottomScreen(
val bTitle:String, val bRoute: String, @ DrawableRes val icon: Int

):Screen(bTitle,bRoute){
object Home: BottomScreen(bTitle = "Home", bRoute = "home", R.drawable.outline_library _music_24)
object Library: BottomScreen(bTitle = "Library", bRoute = "library", R.drawable.baseline_subscriptions_24)
object Browse: BottomScreen(bTitle = "Browse", bRoute = "browse", R.drawable.baseline_apps_24)

}

sealed class DrawerScreen(val dTitle:String, val dRoute:String, @ DrawableRes val icon:Int)
:Screen(dTitle,dRoute){

 Add the list of bottom items at Screen.kt for mainview to control.

Screen.kt

val screeninBottom = listOf(
Screen.BottomScreen.Home,
Screen.BottomScreen.Browse, ——
Screen.BottomScreen.Library

) 2

Add the BottomBar to Screen (2)
 Add the BottomBar in Scaffold

MainView.kt

val bottomBar: @Composable () -> Unit ={
if(currentScreen is Screen.DrawerScreen || currentScreen == Screen.BottomScreen.Home){
BottomNavigation(Modifier.wrapContentSize()) {
screeninBottom.forEach{

item->
BottomNavigationltem(
selected = currentRoute == item.bRoute,

onClick = {controller.navigate(item.bRoute)
title.value = item.bTitle},
icon = { lcon(contentDescription = item.bTitle, painter = painterResource(id = item.icon))},
label = {Text(text = item.bTitle)},
selectedContentColor = Color.White,
unselectedContentColor = Color.Black

fHaldl
STa..C.U\

topBar = {
TopAppBar(title = {Texi(title.value)},
navigationlcon = { lconButton(onClick = {

Add the BottomBar Navigation Routes

« Add the composable an Navigation class in MainView.kt

MainView.kt

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){
NavHost(nhavController=navController as NavHostController,

startDestination = Screen.DrawerScreen.AddAccount.route,

modifier = Modifier.padding(pd)){

composable(Screen.BottomScreen.Home.bRoute){

}

composable(Screen.BottomScreen.Browse.bRoute){

}

composable(Screen.BottomScreen.Library.bRoute){

1

composable(Screen.DrawerScreen.AddAccount.route){

}

Add the HomeView

Create a HomeView.kt file at ui.theme package

HomeView.kt

HomeView.kt

@Composable
fun Home(){
val categories = listOf("Hits", "Rock", "Pop", "R&B", "Country")
val grouped = listOf<String>("New Release", "Favorites", "Top
Rated", "Editor Selection").groupBy { it[0] }
LazyColumn {
grouped.forEach{
val sit = it
stickyHeader {
Text(text=sit.value[0], modifier = Modifier.padding(16.dp))
LazyRow {
items(categories){
cate->
Browserltem(cate= cate,
R.drawable.baseline _apps 24)

@Composable
fun Browserltem(cate:String, drawable:Int){

Card(modifier = Modifier.padding(16.dp).size(200.dp),
border = BorderStroke(3.dp, color = Color.DarkGray)) {
Column(verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally) {

Text(text = cate)

Image(painter = painterResource(id=drawable),
contentDescription = cate)

}
}
}

MainView.kt

fun Navigation(navController: NavController, viewModel: MainViewModel,
pd:PaddingValues){

NavHost(navController=navController as NavHostController,
startDestination = Screen.DrawerScreen.AddAccount.route,
modifier = Modifier.padding(pd)){
composable(Screen.BottomScreen.Home.bRoute){

Home()

}

composable(Screen.BottomScreen.Browse.bRoute){

} 5

Add the Browse View

Create a BrowseView.kt file at ui.theme package

Hits Rock

BrowseView.kt

@Composable
fun Browse(){
val categories = listOf("Hits", "Rock", "Pop", "R&B", "Country")
LazyVerticalGrid(GridCells.Fixed(2)) {
items(categories){ cate ->
Browserltem(cate = cate, drawable = R.drawable.baseline_apps_24)

}

Pop R&B

}

}

MainView.kt couny

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){
NavHost(navController=navController as NavHostController,
startDestination = Screen.DrawerScreen.AddAccount.route,
modifier = Modifier.padding(pd)){
composable(Screen.BottomScreen.Home.bRoute){
Home()

}

composable(Screen.BottomScreen.Browse.bRoute){
Browse()

}

composable(Screen.BottomScreen.Library.bRoute){ :

Add the Library View(1)
* Prepare the Icon Resource data list

e Create a DataResource.kt file

=, Flaylist >

DataResource.kt &g S ?

data class Lib(@ DrawableRes val icon: Int, val name:String) (8) Album >

val libraries = listOf<Lib>(J songs N
Lib(R.drawable.playlist_play 24px,"Playlist"),

Lib(R.drawable.artist_24px,"Artists"), @ Gee ;

Lib(R.drawable.album_24px,"Aloum"),
Lib(R.drawable.music_note 24px,"Songs"),
Lib(R.drawable.genres_24px,"Genre")

Add the Library View(Z

e Import the Icon resource from Google Fonts

Search

e https://fonts.google.com/

B GoogleFonts Q

Sartby

& °B Google Fonts Q searchicons Mast popular ™
fonts —F
i Filters

@ = Filters
Noto
£H

Material Design icon Figma plugin GitHub repo Apache license

guidelines u rial Symbcts s s ar
° oo o ettt # 7 ~ 1%

e Material Design icon
@)
Ul actions H .
™ ! guidelines @
— Learn about the latest
o\ m - X @ @ O + best practices for icons
S h Hom M Cl Setting: Check Circle Favorit Add

Delete Arrow Back Star Chevron Right Logout Arrow Add Circle Cancel
Forward i0S @

Play Arrow Play Circle

@) d

Speed Skip Next

music

Figma plugin

Use the Material Symbols
plugin on Figma

s

Library Add

D)

Volume Up

O

Replay

GitHu

This re|
the bin
by Goc

Use with Views

Download the Vector Drawable and
follow the import instructions.

<ImageView ...
android:src="@drawable/music_not¢
/>

|_D Copy code

&, Download

e ——

Add the Library View

« Copy the downloaded xml file to res->drawable package

| "
. - - — _ e Android
’: = | a2y = o) T = == . e T 3iE ! D
[
L . ™ . 1 (o] ~ [2] ug.ac.uict musicappui
HE] EH AR e (o&
> [i
v | T [< DataResource kt
‘e music_note_24px.xml ~ 23/05/2025 16:51 Microsoft Ec || (@ MainActivity
v e [< Screenkt
. B o maa ks ool ah AT > [2] ug.ac.uictmusicappui (androidTest)

> [2] ug.ac.uict musicappui (test)

N Eres

B o ey R e T wa vt By

v R T,
-) ~ [=] drawable
\- -lq :.1- » = s) |
</> album_24px.xm|
v Bl
' <[> artist_24px.xml
- B
g R <[> baseline_account box 24.xm|
o, el e e s mmr_ </> baseline_apps_24.xml
i'. Bl b gL e LT - = </> baseline_person_add_alt 24.xm|
M . <> baseline_subscriptions_24.xml
O e o 11 (
</> genres_24px.xml
P 3 it .]
<> ic_launcher_background.xml
rr 1 : c @ </>ic_launcher foreground.xml
P S " I e T S W [= M5 , i m (f)music_note_zzlp)(_xml

e N A 1 R N e, T ok — /g ‘ </> outline_library_music_24.xml

m i e o o]

Add the Library View(4)

« Add the dependency in your app-level build.gradle files

« The Appcompat allows access to new APls on older APl versions of the platform (many
using Material Design).

v (&7 Gradle Scripts _ _ _ : : :
implementation("androidx.compose.material:material:$compose_version")

&2 build.gradlekts (Project: MyLibraryApp) implementation("androidx.compose.ui:ui-tooling-preview:$compose_version")
&2 build.gradle.kts (Module :app) ,

val appcompat_version ="1.7.0"
= proguard-rules.pro (ProGuard Rules for%p'\'_)\

implementation("androidx.appcompat:appcompat:$appcompat_version™)
// For loading and tinting drawables on older versions of the platform
£33 gradle-wrapper.properties (Gradle Version) implementation("androidx.appcompat:appcompat-resources:$appcompat_version")

£33 gradle.properties (Project Properties)

T] |i ' (i . L .
libs.versions.toml (Version Catalog) implementation(libs.androidx.core.ktx)

£33 local.properties (SDK Location) implementation(libs.androidx.lifecycle.runtime.ktx)

EE?; settings.gradle.kts (Project Settings)

https://developer.android.com/jetpack/androidx/releases/appcompat

10

https://developer.android.com/jetpack/androidx/releases/appcompat

Add the Library View(5)

» Create a LibraryView.kt file at ui.theme package =" >

LibraryView.kt

@Composable
fun Library(){
LazyColumn() {
items(libraries){

lib ->
Libltem(lib = lib)
}
}
}
@Composable
fun Libltem(lib: Lib){
Column {
Row(modifier = Modifier.fillMaxWidth().padding(vertical = 16.dp),
horizontalArrangement = Arrangement.SpaceBetween){
Row {
Icon(painter = painterResource(id=lib.icon), modifier =
Modifier.padding(horizontal = 8.dp), contentDescription = lib.name)
Text(text=lib.name)
}
Icon(imageVector = Icons.Default.KeyboardArrowRight, contentDescription = "Arrow Right")
}
Divider(color = Color.LightGray)
}

2y Artists 3
@ Alburm >
J' Songs >
@ Genre >
MainView.kt
composable(Screen.BottomScreen.Home.bRoute){
Home()
}

composable(Screen.BottomScreen.Browse.bRoute){
Browse()

}

omposable(Screen.BottomScreen.Library.bRoute){
Library()

}

composable(Screen.DrawerScreen.AddAccount.route)

{

11

Bottom sheets

e Bottom sheets show secondary content
anchored to the bottom of the screen

» https://m2.material.io/components/sheets-
bottom

Add a Bottom sheets to the Scaffold(1)

MainView.kt

Creating and remembering the state for a
ModalBottomSheetLayout (a modal bottom

val modalSheetState = androidx.compose.material.rememberModalBotiomSheetState(
initialValue = ModalBottomSheetValue.Hidden,
confirmValueChange = { it = ModalBottomSheetValue.HalfExpanded}

/

[ModalBottomSheetLayout(

sheetState = modalSheetState,

sheetShape = RoundedCornerShape(topStart = 12.dp, topEnd = 12.dp),
sheetContent = { MoreBottomSheet(modifier = Modifier.fillMaxWidth()) }

{

Scaffalde
bottomBar = botto
topBar = {
TopAppBar(title = {Text(title.value)},
actions = {

IconButton(onClick = {
scope.launch {
if(modalSheetState.isVisible)
modalSheetState.hide()
else
modalSheetState.show()
}

HA{
Icon(imageVector = Icons.Default.MoreVert, contentDescription = "more")
}
|3
navigationlcon = { IconButton(onClick = {
scope.launch {
scaffoldState.drawerState.open()

/sheet component). This state object allows
you to control the sheet's visibility
(showing/hiding it) and react to its state
changes.

ModalBottomSheetLayout is a component from
the Jetpack Compose Material library that
allows you to implement a modal bottom sheet.
This is a panel that slides up from the bottom of
the screen, typically to present options or
additional information related to the current
context. When the sheet is visible, it overlays
the main screen content.

Include the all Scaffold() to the
ModalBottomSheetLayout()

You want your entire application interface (built with
Scaffold) to act as the background, and the
MoreBottomSheet that slides up from the bottom
should be a temporary, overlaying modal view.
ModalBottomSheetlLayout is designed precisely for
this layout pattern. You put the Scaffold inside to tell
ModalBottomSheetlLayout: "This is my main screen;
please display your sheet on top of it."

13

Add a Bottom sheets to the Scaffold(2)

MainView.kt

val modalSheetState = androidx.compose.material.rememberModalBottomSheetState(
initialValue = ModalBottomSheetValue.Hidden,
confirmValueChange = { it = ModalBottomSheetValue.HalfExpanded}

)

ModalBottomSheetLayout(
sheetState = modalSheetState,
sheetShape = RoundedCornerShape(topStart = 12.dp, topEnd = 12.dp),
sheetContent = { MoreBottomSheet(modifier = Modifier.fillMaxWidth()) }
) {

Scaffold(
bottomBar = bottomBarr,
topBar = {
TopAppBar(title = {Text(title.value)},
actions ={
IconButton(onClick = {
scope.launch {
if(modalSheetState.isVisible)
modalSheetState.hide()
else
modalSheetState.show()
}
H{
Icon(imageVector = Icons.Default.MoreVert, contentDescription = "more")
}
},

navigationlcon = { lconButton(onClick = {
scope.launch {
scaffoldState.drawerState.open()

This action item is an IconButton that displays the
"more vertical" (three dots) icon.When this icon
button is clicked:

A coroutine is launched.

Inside the coroutine, it checks the current visibility
of a modal bottom sheet (controlled by
modalSheetState).

If the bottom sheet is currently visible, the hide()
function is called to animate it closed.

If the bottom sheet is currently hidden, the show()
function is called to animate it open.

14

Add a Bottom sheets to the Scaffold(3)

The Ul Block of the Bottom sheets
MainView.kt

@Composable
fun MoreBottomSheet(modifier: Modifier){
Box(Modifier.fillMaxWidth().height(300.dp).background(
MaterialTheme.colors.primarySurface
A
Column(modifier = modifier.padding(16.dp),
verticalArrangement = Arrangement.SpaceBetween){ Setting
Row(modifier = modifier.padding(16.dp)) {
Icon(modifier = Modifier.padding(end = 8.dp),
painter = painterResource(id = R.drawable.baseline_settings_24), contentDescription = "Settings”

)
Text(text = "Setting", fontSize = 20.sp, color = Color.White) Help

Share

}
Row(modifier = modifier.padding(16.dp)) {
Icon(modifier = Modifier.padding(end = 8.dp),
painter = painterResource(id = R.drawable.baseline_share_24), contentDescription = "Share"

)
Text(text = "Share", fontSize = 20.sp, color = Color.White)

}

Row(modifier = modifier.padding(16.dp)) {
Icon(modifier = Modifier.padding(end = 8.dp),

painter = painterResource(id = R.drawable.baseline_help_24), contentDescription = "Help"

)
Text(text = "Help", fontSize = 20.sp, color = Color.White)

}

}

} 15
}

	スライド 1: Mobile Application Development
	スライド 2: Add the BottomBar to Screen (1)
	スライド 3: Add the BottomBar to Screen (2)
	スライド 4: Add the BottomBar Navigation Routes
	スライド 5: Add the HomeView
	スライド 6: Add the Browse View
	スライド 7: Add the Library View(1)
	スライド 8: Add the Library View(2)
	スライド 9: Add the Library View(3)
	スライド 10: Add the Library View(4)
	スライド 11: Add the Library View(5)
	スライド 12: Bottom sheets
	スライド 13: Add a Bottom sheets to the Scaffold(1)
	スライド 14: Add a Bottom sheets to the Scaffold(2)
	スライド 15: Add a Bottom sheets to the Scaffold(3)

