
Mobile Application
Development

Week13 Desing a Music App by Scaffold composable (2)

Yi SUN

Kobe Institute of Computing

Mobile Application Development | week13

1

Add the BottomBar to Screen (1)

• Add the BottomScreen class at Screen.kt

2

sealed class Screen(val title:String, val route: String) {

sealed class BottomScreen(

val bTitle:String, val bRoute: String, @DrawableRes val icon: Int

):Screen(bTitle,bRoute){

object Home: BottomScreen(bTitle = "Home", bRoute = "home", R.drawable.outline_library_music_24)

object Library: BottomScreen(bTitle = "Library", bRoute = "library", R.drawable.baseline_subscriptions_24)

object Browse: BottomScreen(bTitle = "Browse", bRoute = "browse", R.drawable.baseline_apps_24)

}

sealed class DrawerScreen(val dTitle:String, val dRoute:String, @DrawableRes val icon:Int)

:Screen(dTitle,dRoute){

val screenInBottom = listOf(

Screen.BottomScreen.Home,

Screen.BottomScreen.Browse,

Screen.BottomScreen.Library

)

• Add the list of bottom items at Screen.kt for mainview to control.

Screen.kt

Screen.kt

Add the BottomBar to Screen (2)
• Add the BottomBar in Scaffold

3

val bottomBar: @Composable () -> Unit ={

if(currentScreen is Screen.DrawerScreen || currentScreen == Screen.BottomScreen.Home){

BottomNavigation(Modifier.wrapContentSize()) {

screenInBottom.forEach{

item->

BottomNavigationItem(

selected = currentRoute == item.bRoute,

onClick = {controller.navigate(item.bRoute)

title.value = item.bTitle},

icon = { Icon(contentDescription = item.bTitle, painter = painterResource(id = item.icon))},

label = {Text(text = item.bTitle)},

selectedContentColor = Color.White,

unselectedContentColor = Color.Black

)

}

}

}

}

Scaffold(

bottomBar = bottomBar,

topBar = {

TopAppBar(title = {Text(title.value)},

navigationIcon = { IconButton(onClick = {

MainView.kt

Add the BottomBar Navigation Routes
• Add the composable an Navigation class in MainView.kt

4

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

NavHost(navController=navController as NavHostController,

startDestination = Screen.DrawerScreen.AddAccount.route,

modifier = Modifier.padding(pd)){

composable(Screen.BottomScreen.Home.bRoute){

}

composable(Screen.BottomScreen.Browse.bRoute){

}

composable(Screen.BottomScreen.Library.bRoute){

}

composable(Screen.DrawerScreen.AddAccount.route){

}

MainView.kt

fun Navigation(navController: NavController, viewModel: MainViewModel,

pd:PaddingValues){

NavHost(navController=navController as NavHostController,

startDestination = Screen.DrawerScreen.AddAccount.route,

modifier = Modifier.padding(pd)){

composable(Screen.BottomScreen.Home.bRoute){

Home()

}

composable(Screen.BottomScreen.Browse.bRoute){

}

Add the HomeView

5

Create a HomeView.kt file at ui.theme package

@Composable

fun Home(){

val categories = listOf("Hits", "Rock", "Pop", "R&B", "Country")

val grouped = listOf<String>("New Release", "Favorites", "Top

Rated", "Editor Selection").groupBy { it[0] }

LazyColumn {

grouped.forEach{

val sit = it

stickyHeader {

Text(text=sit.value[0], modifier = Modifier.padding(16.dp))

LazyRow {

items(categories){

cate->

BrowserItem(cate= cate,

R.drawable.baseline_apps_24)

}

}

}

}

}

}

@Composable

fun BrowserItem(cate:String, drawable:Int){

Card(modifier = Modifier.padding(16.dp).size(200.dp),

border = BorderStroke(3.dp, color = Color.DarkGray)) {

Column(verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally) {

Text(text = cate)

Image(painter = painterResource(id=drawable),

contentDescription = cate)

}

}

}

HomeView.kt HomeView.kt

MainView.kt

fun Navigation(navController: NavController, viewModel: MainViewModel, pd:PaddingValues){

NavHost(navController=navController as NavHostController,

startDestination = Screen.DrawerScreen.AddAccount.route,

modifier = Modifier.padding(pd)){

composable(Screen.BottomScreen.Home.bRoute){

Home()

}

composable(Screen.BottomScreen.Browse.bRoute){

Browse()

}

composable(Screen.BottomScreen.Library.bRoute){

Add the Browse View

6

Create a BrowseView.kt file at ui.theme package

@Composable

fun Browse(){

val categories = listOf("Hits", "Rock", "Pop", "R&B", "Country")

LazyVerticalGrid(GridCells.Fixed(2)) {

items(categories){ cate ->

BrowserItem(cate = cate, drawable = R.drawable.baseline_apps_24)

}

}

}

BrowseView.kt

6

MainView.kt

Add the Library View(1)

• Prepare the Icon Resource data list

• Create a DataResource.kt file

7

data class Lib(@DrawableRes val icon: Int, val name:String)

val libraries = listOf<Lib>(

Lib(R.drawable.playlist_play_24px,"Playlist"),

Lib(R.drawable.artist_24px,"Artists"),

Lib(R.drawable.album_24px,"Album"),

Lib(R.drawable.music_note_24px,"Songs"),

Lib(R.drawable.genres_24px,"Genre")

)

DataResource.kt

Add the Library View(2)
• Import the Icon resource from Google Fonts

• https://fonts.google.com/

8

Search

Add the Library View(3)

• Copy the downloaded xml file to res->drawable package

9

implementation("androidx.compose.material:material:$compose_version")

implementation("androidx.compose.ui:ui-tooling-preview:$compose_version")

val appcompat_version = "1.7.0"

implementation("androidx.appcompat:appcompat:$appcompat_version")

// For loading and tinting drawables on older versions of the platform

implementation("androidx.appcompat:appcompat-resources:$appcompat_version")

implementation(libs.androidx.core.ktx)

implementation(libs.androidx.lifecycle.runtime.ktx)

Add the Library View(4)

• Add the dependency in your app-level build.gradle files

• The Appcompat allows access to new APIs on older API versions of the platform (many
using Material Design).

10
https://developer.android.com/jetpack/androidx/releases/appcompat

https://developer.android.com/jetpack/androidx/releases/appcompat

• Create a LibraryView.kt file at ui.theme package

11

Add the Library View(5)

@Composable

fun Library(){

LazyColumn() {

items(libraries){

lib ->

LibItem(lib = lib)

}

}

}

@Composable

fun LibItem(lib: Lib){

Column {

Row(modifier = Modifier.fillMaxWidth().padding(vertical = 16.dp),

horizontalArrangement = Arrangement.SpaceBetween){

Row {

Icon(painter = painterResource(id=lib.icon), modifier =

Modifier.padding(horizontal = 8.dp), contentDescription = lib.name)

Text(text=lib.name)

}

Icon(imageVector = Icons.Default.KeyboardArrowRight, contentDescription = "Arrow Right")

}

Divider(color = Color.LightGray)

}

}

LibraryView.kt

composable(Screen.BottomScreen.Home.bRoute){

Home()

}

composable(Screen.BottomScreen.Browse.bRoute){

Browse()

}

composable(Screen.BottomScreen.Library.bRoute){

Library()

}

composable(Screen.DrawerScreen.AddAccount.route)

{

MainView.kt

Bottom sheets

• Bottom sheets show secondary content
anchored to the bottom of the screen

• https://m2.material.io/components/sheets-
bottom

12

Add a Bottom sheets to the Scaffold(1)

13

val modalSheetState = androidx.compose.material.rememberModalBottomSheetState(

initialValue = ModalBottomSheetValue.Hidden,

confirmValueChange = { it != ModalBottomSheetValue.HalfExpanded}

)

ModalBottomSheetLayout(

sheetState = modalSheetState,

sheetShape = RoundedCornerShape(topStart = 12.dp, topEnd = 12.dp),

sheetContent = { MoreBottomSheet(modifier = Modifier.fillMaxWidth()) }

) {

Scaffold(

bottomBar = bottomBar,

topBar = {

TopAppBar(title = {Text(title.value)},

actions = {

IconButton(onClick = {

scope.launch {

if(modalSheetState.isVisible)

modalSheetState.hide()

else

modalSheetState.show()

}

}) {

Icon(imageVector = Icons.Default.MoreVert, contentDescription = "more")

}

},

navigationIcon = { IconButton(onClick = {

scope.launch {

scaffoldState.drawerState.open()

Include the all Scaffold() to the
ModalBottomSheetLayout()

Creating and remembering the state for a
ModalBottomSheetLayout (a modal bottom
sheet component). This state object allows
you to control the sheet's visibility
(showing/hiding it) and react to its state
changes.

ModalBottomSheetLayout is a component from
the Jetpack Compose Material library that
allows you to implement a modal bottom sheet.
This is a panel that slides up from the bottom of
the screen, typically to present options or
additional information related to the current
context. When the sheet is visible, it overlays
the main screen content.

You want your entire application interface (built with
Scaffold) to act as the background, and the
MoreBottomSheet that slides up from the bottom
should be a temporary, overlaying modal view.
ModalBottomSheetLayout is designed precisely for
this layout pattern. You put the Scaffold inside to tell
ModalBottomSheetLayout: "This is my main screen;
please display your sheet on top of it."

MainView.kt

Add a Bottom sheets to the Scaffold(2)

14

val modalSheetState = androidx.compose.material.rememberModalBottomSheetState(

initialValue = ModalBottomSheetValue.Hidden,

confirmValueChange = { it != ModalBottomSheetValue.HalfExpanded}

)

ModalBottomSheetLayout(

sheetState = modalSheetState,

sheetShape = RoundedCornerShape(topStart = 12.dp, topEnd = 12.dp),

sheetContent = { MoreBottomSheet(modifier = Modifier.fillMaxWidth()) }

) {

Scaffold(

bottomBar = bottomBar,

topBar = {

TopAppBar(title = {Text(title.value)},

actions = {

IconButton(onClick = {

scope.launch {

if(modalSheetState.isVisible)

modalSheetState.hide()

else

modalSheetState.show()

}

}) {

Icon(imageVector = Icons.Default.MoreVert, contentDescription = "more")

}

},

navigationIcon = { IconButton(onClick = {

scope.launch {

scaffoldState.drawerState.open()

This action item is an IconButton that displays the
"more vertical" (three dots) icon.When this icon
button is clicked:
A coroutine is launched.
Inside the coroutine, it checks the current visibility
of a modal bottom sheet (controlled by
modalSheetState).
If the bottom sheet is currently visible, the hide()
function is called to animate it closed.
If the bottom sheet is currently hidden, the show()
function is called to animate it open.

MainView.kt

Add a Bottom sheets to the Scaffold(3)

15

@Composable

fun MoreBottomSheet(modifier: Modifier){

Box(Modifier.fillMaxWidth().height(300.dp).background(

MaterialTheme.colors.primarySurface

)){

Column(modifier = modifier.padding(16.dp),

verticalArrangement = Arrangement.SpaceBetween){

Row(modifier = modifier.padding(16.dp)) {

Icon(modifier = Modifier.padding(end = 8.dp),

painter = painterResource(id = R.drawable.baseline_settings_24), contentDescription = "Settings"

)

Text(text = "Setting", fontSize = 20.sp, color = Color.White)

}

Row(modifier = modifier.padding(16.dp)) {

Icon(modifier = Modifier.padding(end = 8.dp),

painter = painterResource(id = R.drawable.baseline_share_24), contentDescription = "Share"

)

Text(text = "Share", fontSize = 20.sp, color = Color.White)

}

Row(modifier = modifier.padding(16.dp)) {

Icon(modifier = Modifier.padding(end = 8.dp),

painter = painterResource(id = R.drawable.baseline_help_24), contentDescription = "Help"

)

Text(text = "Help", fontSize = 20.sp, color = Color.White)

}

}

}

}

The UI Block of the Bottom sheets
MainView.kt

	スライド 1: Mobile Application Development
	スライド 2: Add the BottomBar to Screen (1)
	スライド 3: Add the BottomBar to Screen (2)
	スライド 4: Add the BottomBar Navigation Routes
	スライド 5: Add the HomeView
	スライド 6: Add the Browse View
	スライド 7: Add the Library View(1)
	スライド 8: Add the Library View(2)
	スライド 9: Add the Library View(3)
	スライド 10: Add the Library View(4)
	スライド 11: Add the Library View(5)
	スライド 12: Bottom sheets
	スライド 13: Add a Bottom sheets to the Scaffold(1)
	スライド 14: Add a Bottom sheets to the Scaffold(2)
	スライド 15: Add a Bottom sheets to the Scaffold(3)

