
Mobile Application 

Development

Week2 The Fundamentals of Kotlin

Mobile Application Development | week 2

1



The Fundamentals of Kotlin

Basic Kotlin Syntax and Structure

Today, we dive into the essentials of Kotlin, an intuitive language for Android  

development. From variables and data types to control flows and operators, this guide  

will solidify your foundation in Kotlin, whether you’re a seasoned developer or a  

beginner in app development.

2The Fundamentals of Kotlin

Mobile Application Development | week 2



Kotlin Reference

• Kotlin Documentation

• https://kotlinlang.org/docs/home.html

• Kotlin Tutorial

• https://www.tutorialspoint.com/kotlin/index.htm

• Kotlin by Example

• https://play.kotlinlang.org/byExample/overview

Mobile Application Development | week 2

3The Fundamentals of Kotlin

https://kotlinlang.org/docs/home.html
https://www.tutorialspoint.com/kotlin/index.htm
https://play.kotlinlang.org/byExample/overview


Creating a New Android Project

1. Open Android Studio

2. Select File > New > New Project

3. Choose No Activity as your template

4. Configure your project:

Name: Enter project name

Package name: Set package name  

Language: Select Kotlin

Minimum SDK: Choose minimum Android version

5. Click Finish

4The Fundamentals of Kotlin

Mobile Application Development | week 2



Adding Your First kotlin file

open the project directory

app/kotlin+java/<package name>/ : Contains Kotlin source files  

Right-click on the app/kotlin+java/<package name>/ directory

Select New > File

Enter the file name, e.g., helloworld.kt

Click OK

5The Fundamentals of Kotlin

Mobile Application Development | week 2



Run the kotlin program in the online platform

Kotlin Playground

https://play.kotlinlang.org/

6The Fundamentals of Kotlin

Mobile Application Development | week 2

https://play.kotlinlang.org/


Writing your first Kotlin program

fun main() {
println("Hello, World!")

}

Run

7The Fundamentals of Kotlin

Click button to run the program

Mobile Application Development | week 2



What are Variables?

Variables are crucial in Kotlin, allowing you to:

Store, modify, and manage data

Hold different data types like numbers, characters, strings, and objects

8The Fundamentals of Kotlin

Mobile Application Development | week 2



Creating Variables in Kotlin

Kotlin defines variables with var or val , the variable name, data type (optional), and  

value assignment.

var variableName: DataType = value // Mutable variable  
val constantName: DataType = value // Immutable variable

More examples:

var age: Int = 30 // Mutable integer variable
val pi: Double = 3.14 // Immutable double variable
var name = "Yi Sun" // Type inferred as String, Mutable  
val isAdult = true // Type inferred as Boolean, Immutable

9The Fundamentals of Kotlin

Mobile Application Development | week 2



val :

val : Stands for “value” and it’s immutable, which means once you assign a value to a

val variable, you cannot change or reassign it.

Preferred when you have a variable whose value shouldn’t change once initialized, like

constants or properties that should remain unchanged.

val pi = 3.14 // An immutable variable
// pi = 3.14159 // This would cause a compilation error

10The Fundamentals of Kotlin

Mobile Application Development | week 2



var :

var : Is mutable, meaning after you assign an initial value, you can change or reassign  

that variable to a new value as many times as you want.

Used when you anticipate the value of a variable will change, like counters in a loop or

a value being updated based on user input.

var counter = 0 // A mutable variable
counter = 1 // Modifying the value of the variable

11The Fundamentals of Kotlin

Mobile Application Development | week 2



12The Fundamentals of Kotlin

Datatypes

In programming, you work with various types of data, such as numbers, text, or  

true/false values. In Kotlin, data types act as labels that inform the computer about the  

kind of data you're handling, helping it process the data correctly. When you create a  

variable, you specify its data type (like number, text, or true/false), and once set, this  

type remains fixed.

Mobile Application Development | week 2



Integers ( Int and Long )

Description: Integer types can hold whole numbers, both positive and negative. The  

most commonly used integer type is Int .For larger integer values, Long can be used.

Syntax and Examples:

val age: Int = 25
val largeNumber: Long = 10000000000L

13The Fundamentals of Kotlin

Mobile Application Development | week 2



Floats and Doubles (Float and Double)

Description: Floats and Doubles are used to represent decimal numbers. Double has  

higher precision and is generally used as the default for decimal numbers.

Syntax and Examples:

val pi: Double = 3.14
val floatNumber: Float = 2.73F

14The Fundamentals of Kotlin

Mobile Application Development | week 2



Characters (Char)

Description: Characters represent a single character.

val letter: Char = 'A'

Special characters start from an escaping backslash ¥ .

¥t : Tab ¥r : Carriage return

¥b : Backspace ¥" : Double quote

¥n : Newline ¥' : Single quote

¥$ : dollar sign ¥¥ : Backslash

15The Fundamentals of Kotlin

Mobile Application Development | week 2



Strings (String)

Description: Strings represent text data. In Kotlin, strings can be created using double  

quotes.

val name: String = "John Smith"  
val multiLineText: String = """

This is a multi-line  
string in Kotlin
It preserves formatting

"""

String templates:

val name = "John"
println("Hello, $name") // Using $variableName  
val age = 25
println("Next year, ${name} will be ${age + 1}") // Using ${expression}

16The Fundamentals of Kotlin

Mobile Application Development | week 2



String Formatting

To format a string to your specific requirements, use the String.format() function.

// Formats an integer, adding leading zeroes to reach a length of seven characters  
val integerNumber = String.format("%07d", 31416)
println(integerNumber)
// 0031416

// Formats a floating-point number to display with a + sign and four decimal places  
val floatNumber = String.format("%+.4f", 3.141592)
println(floatNumber)
// +3.1416

// Formats two strings to uppercase, each taking one placeholder  
val helloString = String.format("%S %S", "hello", "world")  
println(helloString)
// HELLO WORLD

17The Fundamentals of Kotlin

Mobile Application Development | week 2



Boolean (Boolean)

Description: Boolean type represents true/false values.

val isStudent: Boolean = true  
val isEmployed: Boolean = false
val result = 5 > 3 // evaluates to true  
println(result)

18The Fundamentals of Kotlin

Mobile Application Development | week 2



Logical Operators

|| (Logical OR): Returns true if at least one condition is true.

&& (Logical AND): Returns true only if both conditions are true.

! (Logical NOT): Negates the value; turns true into false and vice versa.

val a = true  
val b = false
println(a || b) // true  
println(a && b) // false  
println(!a) // false

19The Fundamentals of Kotlin

Mobile Application Development | week 2



Arrays

An array is a data structure that holds a fixed number of values of the same type or its  

subtypes. The most common type of array in Kotlin is the object-type array, represented  

by the Array class.

Create Arrays

To create arrays in Kotlin, you can use:

functions, such as arrayOf() , arrayOfNulls() 

val simpleArray = arrayOf(1, 2, 3)
val nullArray: Array<Int?> = arrayOfNulls(3)  //Nullable Integer Array

20The Fundamentals of Kotlin

Mobile Application Development | week 2



Use the Array constructor to create an array of a specific size.

// Creates an Array<Int> that initializes with zeros [0, 0, 0]  
val initArray = Array<Int>(3) { 0 }  
println(initArray.joinToString())
// 0, 0, 0

// Creates an Array<String> with values ["0", "1", "4", "9", "16"]  
val asc = Array(5) { i -> (i * i).toString() }
asc.forEach { print(it) }
// 014916

21The Fundamentals of Kotlin

Mobile Application Development | week 2



Nested arrays

// Creates a two-dimensional array
val twoDArray = Array(2) { Array<Int>(2) { 0 } }  
println(twoDArray.contentDeepToString())
// [[0, 0], [0, 0]]

// Creates a three-dimensional array

val threeDArray = Array(3) { Array(3) { Array<Int>(3) { 0 } } }  
println(threeDArray.contentDeepToString())
// [[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]

22The Fundamentals of Kotlin

Mobile Application Development | week 2



Access and modify elements

val simpleArray = arrayOf(1, 2, 3)
val twoDArray = Array(2) { Array<Int>(2) { 0 } }

// Accesses the element and modifies it  
simpleArray[0] = 10
twoDArray[0][0] = 2

// Prints the modified element  
println(simpleArray[0].toString()) // 10
println(twoDArray[0][0].toString()) // 2

23The Fundamentals of Kotlin

Mobile Application Development | week 2



Common Array Operations:

// Find element
val hasTwo = numbers.contains(2)
val indexOfThree = numbers.indexOf(3)

// Transform array
val doubled = numbers.map { it * 2 }.toTypedArray()  
val filtered = numbers.filter { it > 3 }.toTypedArray()

// Sort array
numbers.sort() // In-place sorting
val sorted = numbers.sorted() // Returns new sorted list  
val descendingSorted = numbers.sortedDescending()

Note: Some operations like map and filter return a List by default. Use

toTypedArray() to convert back to an Array if needed.

24The Fundamentals of Kotlin

Mobile Application Development | week 2



Control Flow: if Statement

val score = 85
if (score >= 90) {

println("You
}
val score = 75

got an A.")

if (score >= 90)
println("You

{
got an A.")

} else {
println("You

}
val score = 65

got a B.")

if (score >= 90)
println("You

{
got an A.")

} else if (score >= 80) {
println("You

} else {
got a B.")

println("You
}

got a C.")

25The Fundamentals of Kotlin

Mobile Application Development | week 2



If Expression

In Kotlin, if is an expression and can return a value.

// Basic usage
val max = if (a > b) {  

println("Choosing a")  
a // return value

} else {
println("Choosing b")  
b // return value

}

// Used as expression
val min = if (a < b) a else b

26The Fundamentals of Kotlin

Mobile Application Development | week 2



When Expression

Description: Similar to switch in other languages, but more powerful.

val score = 85
val grade = when {

27The Fundamentals of Kotlin

score >= 90 -> "A"
score >= 80 -> "B"
score >= 70 -> "C"
score >= 60 -> "D"
else -> "F"

}

Mobile Application Development | week 2



When with parameter

when (x) {
1 -> println("x is 1")
2, 3 -> println("x is 2 or 3")
in 4..10 -> println("x is between 4 and 10")  
else -> println("x is neither 1 nor 2")

}

28The Fundamentals of Kotlin

Mobile Application Development | week 2



For Loop

// Range iteration  
for (i in 1..5) {

println(i) // prints 1 to 5
}

// Collection iteration
val fruits = listOf("apple", "banana", "orange")  
for (fruit in fruits) {

println(fruit)
}

// Iteration with index
for ((index, value) in fruits.withIndex()) {  

println("$index: $value")
}

29The Fundamentals of Kotlin

Mobile Application Development | week 2



While and Do-While Loops

// while loop
val items = listOf("apple", "banana", "kiwifruit")  
var index = 0
while (index < items.size) {

println("item at $index is ${items[index]}")  
index++

}

// do-while loop  
do {

println("Executed at least once")
} while (false)

30The Fundamentals of Kotlin

Mobile Application Development | week 2



Functions
Description: Functions are blocks of reusable code.

// Basic function declaration
fun sayHello(name: String): String {  

return "Hello, $name!"
}

// Single-expression function  
fun double(x: Int) = x * 2

// Default parameters
fun greet(name: String = "Guest") = "Hello, $name!"

// Named parameters
fun createUser(name: String, age: Int, isStudent: Boolean) {

// function body
}
// Calling with named parameters
createUser(name = "Alice", age = 20, isStudent = true)

31The Fundamentals of Kotlin

Mobile Application Development | week 2



Null Safety

Kotlin's type system distinguishes between nullable and non-nullable types.

In Kotlin, the type system distinguishes between types that can hold null (nullable  

types) and those that cannot (non-nullable types). For example, a regular variable of  

type String cannot hold null:

// Assigns a non-null string to a variable  
var a: String = "abc"
// Attempts to re-assign null to the non-nullable variable  
a = null
print(a)
// Null can not be a value of a non-null type String

32The Fundamentals of Kotlin

Mobile Application Development | week 2



Null Safety: Declaring Nullable Variables

To allow null values, declare a variable with a ? sign right after the variable type. For

example, you can declare a nullable string by writing String? . This expression makes

String a type that can accept null:

// Assigns a nullable string to a variable  
var b: String? = "abc"
// Successfully re-assigns null to the nullable variable  
b = null
print(b)
// null

33The Fundamentals of Kotlin

Mobile Application Development | week 2



Collections: List, Set, Map

The following collection types are relevant for Kotlin:

List is an ordered collection with access to elements by indices – integer numbers  

that reflect their position. Elements can occur more than once in a list.

Set is a collection of unique elements. It reflects the mathematical abstraction of  

set: a group of objects without repetitions. Generally, the order of set elements has  

no significance.

Map (or dictionary) is a set of key-value pairs. Keys are unique, and each of them  

maps to exactly one value. The values can be duplicates. Maps are useful for  

storing logical connections between objects.

34The Fundamentals of Kotlin

Mobile Application Development | week 2



List

List<T> stores elements in a specified order and provides indexed access to them.  

Indices start from zero – the index of the first element – and go to lastIndex which is  

the (list.size - 1) .

val numbers = listOf("one", "two", "three", "four")  
println("Number of elements: ${numbers.size}")  
println("Third element: ${numbers.get(2)}")  
println("Fourth element: ${numbers[3]}")
println("Index of element ¥"two¥" ${numbers.indexOf("two")}")

35The Fundamentals of Kotlin

Mobile Application Development | week 2



Set

Set<T> stores unique elements; their order is generally undefined. null elements are  

unique as well: a Set can contain only one null . Two sets are equal if they have the  

same size, and for each element of a set there is an equal element in the other set.

val numbers = setOf(1, 2, 3, 4)  
println("Number of elements: ${numbers.size}")
if (numbers.contains(1)) println("1 is in the set")

val numbersBackwards = setOf(4, 3, 2, 1)
println("The sets are equal: ${numbers == numbersBackwards}")

36The Fundamentals of Kotlin

Mobile Application Development | week 2



Map

Map<K, V> is not an inheritor of the Collection interface; however, it's a Kotlin  

collection type as well. A Map stores key-value pairs (or entries); keys are unique, but  

different keys can be paired with equal values. The Map interface provides specific  

functions, such as access to value by key, searching keys and values, and so on.

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key4" to 1)  

println("All keys: ${numbersMap.keys}")

println("All values: ${numbersMap.values}")
if ("key2" in numbersMap) println("Value by key ¥"key2¥": ${numbersMap["key2"]}")  
if (1 in numbersMap.values) println("The value 1 is in the map")
if (numbersMap.containsValue(1)) println("The value 1 is in the map")

37The Fundamentals of Kotlin

Mobile Application Development | week 2



Collections: types

Kotlin provides both immutable(read-only) and mutable collections.

// List
val readOnlyList = listOf(1, 2, 3)
val mutableList = mutableListOf(1, 2, 3)

// Set
val readOnlySet = setOf(1, 2, 3)
val mutableSet = mutableSetOf(1, 2, 3)

// Map
val readOnlyMap = mapOf("a" to 1, "b" to 2)
val mutableMap = mutableMapOf("a" to 1, "b" to 2)

38The Fundamentals of Kotlin

Mobile Application Development | week 2



MutableList<T>

ListMutableList<T> is a with list-specific write operations, for example, to add or

remove an element at a specific position.

val numbers = mutableListOf(1, 2, 3, 4)  
numbers.add(5)
numbers.removeAt(1)  
numbers[0] = 0  
numbers.shuffle()
println(numbers)

39The Fundamentals of Kotlin

Mobile Application Development | week 2



MutableSet<T>

MutableSet<T> is a Set with set-specific write operations, for example, to add or  

remove an element.

val numbers = mutableSetOf(1, 2, 3, 4)  
numbers.add(5)
numbers.remove(1)  
println(numbers)

40The Fundamentals of Kotlin

Mobile Application Development | week 2



MutableMap<K, V>

MutableMap<K, V> is a Map with map-specific write operations, for example, to add or  

remove a key-value pair.

val numbersMap = mutableMapOf("one" to 1, "two" to 2)  
numbersMap.put("three", 3)
numbersMap["one"] = 100 
println(numbersMap)

41The Fundamentals of Kotlin

Mobile Application Development | week 2



Difference between Array and List in Kotlin

Feature Array List

Size Fixed Variable

Access Direct access, efficient
Can be accessed directly, but 
efficiency might be lower than 
arrays

Operations Basic operations
Rich operations, supports various 
functional operations

Use Cases
For fixed-size data and frequent 
element access

For data with variable size and 
various operations



When to Use Array or List?

43The Fundamentals of Kotlin

Mobile Application Development | week 2

•Array:
•When storing fixed-size data. 

•When frequent element access is required. 

•When performance is a high priority. 

•List:
•When storing data with a variable size. 

•When dynamic add, remove, and update operations are needed. 

•When code readability and conciseness are preferred.



User Input

Getting input from the user is essential in programming when you want your  

application to interact with the user by receiving data that the user provides. In Kotlin,  

you can receive user input from the console using the standard library functions,  

making your programs interactive and dynamic.

If you want to ask the user for input and display it, you can use the combination of

println() to show a message and readln() to get the user’s response.

println("Please enter your name:")  
val name = readln()  
println("Hello, $name!")

44The Fundamentals of Kotlin

Mobile Application Development | week 2



45The Fundamentals of Kotlin

Practice program: Rock Paper Scissors Game

Task Description

Create a command-line Rock Paper Scissors game where a player competes against the  

computer.

Requirements

1. Player can input their choice (1 for Rock, 2 for Scissors, 3 for Paper)

2. Computer randomly generates its choice

3. Game displays both choices and determines the winner

4. Player can exit the game by entering 0

5. Invalid inputs should be handled appropriately

Mobile Application Development | week 2



Game Rules

Rock beats Scissors  

Scissors beats Paper  

Paper beats Rock

Same choices result in a tie

Technical Requirements

Language: Kotlin  

Interface: Command-line

Input: Standard input (keyboard)

Output: Text display of choices and results

46The Fundamentals of Kotlin

Mobile Application Development | week 2



Expected Output Example

Please enter your choice (1 for Rock, 2 for Scissors, 3 for Paper, 0 to exit):  
1
You chose Rock
The computer chose Paper  
You lose!

47The Fundamentals of Kotlin

Mobile Application Development | week 2


	スライド 1: Mobile Application Development
	スライド 2: The Fundamentals of Kotlin
	スライド 3: Kotlin Reference
	スライド 4: Creating a New Android Project
	スライド 5: Adding Your First kotlin file
	スライド 6
	スライド 7: Writing your first Kotlin program
	スライド 8: What are Variables?
	スライド 9: Creating Variables in Kotlin
	スライド 10: val :
	スライド 11: var :
	スライド 12: Datatypes
	スライド 13: Integers ( Int and Long )
	スライド 14: Floats and Doubles (Float and Double)
	スライド 15: Characters (Char)
	スライド 16: Strings (String)
	スライド 17: String Formatting
	スライド 18: Boolean (Boolean)
	スライド 19: Logical Operators
	スライド 20: Arrays
	スライド 21: Use the Array constructor to create an array of a specific size.
	スライド 22: Nested arrays
	スライド 23: Access and modify elements
	スライド 24: Common Array Operations:
	スライド 25: Control Flow: if Statement
	スライド 26: If Expression
	スライド 27: When Expression
	スライド 28: When with parameter
	スライド 29: For Loop
	スライド 30: While and Do-While Loops
	スライド 31: Functions
	スライド 32: Null Safety
	スライド 33: Null Safety: Declaring Nullable Variables
	スライド 34: Collections: List, Set, Map
	スライド 35: List
	スライド 36: Set
	スライド 37: Map
	スライド 38: Collections: types
	スライド 39: MutableList<T>
	スライド 40: MutableSet<T>
	スライド 41: MutableMap<K, V>
	スライド 42: Difference between Array and List in Kotlin
	スライド 43: When to Use Array or List?
	スライド 44: User Input
	スライド 45: Practice program: Rock Paper Scissors Game
	スライド 46: Game Rules
	スライド 47: Expected Output Example

