Mobile Application Development | week 2

Mobile Application
Development

Week2 The Fundamentals of Kotlin

Kobe Institute of Computing _

Kobe Institute of Computing

Mobile Application Development | week 2

The Fundamentals of Kotlin

Basic Kotlin Syntax and Structure

Today, we dive into the essentials of Kotlin, an intuitive language for Android
development. From variables and data types to control flows and operators, this guide
will solidify your foundation in Kotlin, whether you're a seasoned developer or a

beginner in app development.

The Fundamentals of Kotlin

Mobile Application Development | week 2

Kotlin Reference

e Kotlin Documentation

* https://kotlinlang.org/docs/home.html

e Kotlin Tutorial

* https://www.tutorialspoint.com/kotlin/index.htm

» Kotlin by Example
* https://play.kotlinlang.org/byExample/overview

The Fundamentals of Kotlin

https://kotlinlang.org/docs/home.html
https://www.tutorialspoint.com/kotlin/index.htm
https://play.kotlinlang.org/byExample/overview

Mobile Application Development | week 2

Creating a New Android Project

1. Open Android Studio
2.Select File > New > New Project
3. Choose No Activity as your template

4. Configure your project:
o Name: Enter project name
o Package name: Set package name

o Language: Select Kotlin
o Minimum SDK: Choose minimum Android version

5. Click Finish

The Fundamentals of Kotlin

Mobile Application Development | week 2

Adding Your First kotlin file

open the project directory

e app/kotlin+java/<package name>/ : Contains Kotlin source files

e Right-click on the app/kotlin+java/<package name>/ directory

e Select New > File
e Enter the file name, e.g., helloworld.kt

e Click ok

The Fundamentals of Kotlin

Mobile Application Development | week 2

Run the kotlin program in the online platform

e Kotlin Playground
https://play.kotlinlang.org/

The Fundamentals of Kotlin

https://play.kotlinlang.org/

Mobile Application Development | week 2

Writing your first Kotlin program

fun main() {
println("Hello, World!")

}

Click Run button to run the program

The Fundamentals of Kotlin

Mobile Application Development | week 2

What are Variables?

Variables are crucial in Kotlin, allowing you to:

e Store, modify, and manage data

e Hold different data types like numbers, characters, strings, and objects

The Fundamentals of Kotlin

Mobile Application Development | week 2

Creating Variables in Kotlin

Kotlin defines variables with var or val , the variable name, data type (optional), and
value assignment.

value // Mutable variable
value // Immutable variable

var variableName: DataType
val constantName: DataType

More examples:

var age: Int = 30 // Mutable integer variable
val pi: Double = 3.14 // Immutable double variable

var name = "Yi Sun" // Type inferred as String, Mutable
val isAdult = true // Type inferred as Boolean, Immutable

The Fundamentals of Kotlin

Mobile Application Development | week 2

val :

val : Stands for “value” and it's immutable, which means once you assign a value to a
val variable, you cannot change or reassign it.

Preferred when you have a variable whose value shouldn’t change once initialized, like
constants or properties that should remain unchanged.

val pi = 3.14 // An immutable variable
// pi = 3.14159 // This would cause a compilation error

The Fundamentals of Kotlin

10

Mobile Application Development | week 2

var .

var :Is mutable, meaning after you assign an initial value, you can change or reassign
that variable to a new value as many times as you want.

Used when you anticipate the value of a variable will change, like counters in a loop or
a value being updated based on user input.

var counter = 0 // A mutable variable
counter = 1 // Modifying the value of the variable

The Fundamentals of Kotlin

11

Mobile Application Development | week 2

Datatypes

In programming, you work with various types of data, such as numbers, text, or
true/false values. In Kotlin, data types act as labels that inform the computer about the
kind of data you're handling, helping it process the data correctly. When you create a
variable, you specify its data type (like number, text, or true/false), and once set, this

type remains fixed.

12

The Fundamentals of Kotlin

Mobile Application Development | week 2

Integers (Int and Long)

Description: Integer types can hold whole numbers, both positive and negative. The
most commonly used integer type is Int .For largerinteger values, Long can be used.

Syntax and Examples:

val age: Int = 25
val largeNumber: Long = 10000000000L

The Fundamentals of Kotlin

13

Mobile Application Development | week 2

Floats and Doubles (Float and Double)

Description: Floats and Doubles are used to represent decimal numbers. Double has
higher precision and is generally used as the default for decimal numbers.

Syntax and Examples:

val pi: Double = 3.14
val floatNumber: Float = 2.73F

The Fundamentals of Kotlin

14

Mobile Application Development | week 2

Characters (Char)

Description: Characters represent a single character.

val letter: Char = 'A'

Special characters start from an escaping backslash ¥ .

¥t : Tab ¥r : Carriage return
¥b : Backspace ¥":Double quote
¥n : Newline ¥' : Single quote

¥$: dollar sign ¥¥ : Backslash

The Fundamentals of Kotlin

Mobile Application Development | week 2

Strings (String)

Description: Strings represent text data. In Kotlin, strings can be created using double
quotes.

val name: String = "John Smith"
val multilLineText: String = """
This is a multi-line
string in Kotlin
It preserves formatting

String templates:

val name = "John"
println("Hello, $name") // Using $variableName
val age = 25

println("Next year, ${name} will be ${age + 1}") // Using ${expression}

The Fundamentals of Kotlin 16

Mobile Application Development | week 2

String Formatting

To format a string to your specific requirements, use the String.format() function.

// Formats an integer, adding leading zeroes to reach a length of seven characters
val integerNumber = String.format("%07d", 31416)

println(integerNumber)

// 0031416

// Formats a floating-point number to display with a + sign and four decimal places
val floatNumber = String.format("%+.4f", 3.141592)

println(floatNumber)

// +3.1416

// Formats two strings to uppercase, each taking one placeholder
val helloString = String.format("%S %S", "hello", "world")
println(helloString)

// HELLO WORLD

The Fundamentals of Kotlin

17

Mobile Application Development | week 2

Boolean (Boolean)

Description: Boolean type represents true/false values.

val isStudent: Boolean = true

val isEmployed: Boolean = false

val result =5 > 3 // evaluates to true
println(result)

The Fundamentals of Kotlin

18

Mobile Application Development | week 2

Logical Operators

e || (Logical OR): Returns true if at least one condition is true.
e 8&& (Logical AND): Returns true only if both conditions are true.

e | (Logical NOT): Negates the value; turns true into false and vice versa.

val a = true

val b = false

println(a || b) // true
println(a & b) // false
println(!a) // false

The Fundamentals of Kotlin

19

Mobile Application Development | week 2

Arrays

An array is a data structure that holds a fixed number of values of the same type or its
subtypes. The most common type of array in Kotlin is the object-type array, represented
by the Array class.

Create Arrays

To create arrays in Kotlin, you can use:
e functions, such as arrayof() , arrayOfNulls()
val simpleArray = arrayOf(1l, 2, 3)

val nullArray: Array<Int?> = arrayOfNulls(3)

The Fundamentals of Kotlin

20

Mobile Application Development | week 2

e Use the Array constructor to create an array of a specific size.

// Creates an Array<Int> that initializes with zeros [0, 0, O]
val initArray = Array<Int>(3) { 0 }
println(initArray.joinToString())

// 0, 0, ©

// Creates an Array<String> with values ["0", "1", "4", "9", "16"]
val asc = Array(5) { i -> (i * i).toString() }

asc.forkEach { print(it) }

// 014916

The Fundamentals of Kotlin

21

Mobile Application Development | week 2

Nested arrays

// Creates a two-dimensional array

val twoDArray = Array(2) { Array<Int>(2) { @ } }
println(twoDArray.contentDeepToString())

// [[e, @], [e, 0]]

// Creates a three-dimensional array

val threeDArray = Array(3) { Array(3) { Array<Int>(3) { © } } }

println(threeDArray.contentDeepToString())
// [[[e, e, e], [e, o, @], [e, @, @]], [[0, @, @],

The Fundamentals of Kotlin

[e) e) e])

[0, @, @]],

[[e, o, @],

[@) e) e])

[0, o,

0]]]

22

Mobile Application Development | week 2

Access and modify elements

arrayof(1, 2, 3)

val simpleArray =
= Array(2) { Array<Int>(2) { © } }

val twoDArray

// Accesses the element and modifies it
simpleArray[0] =
twoDArray[@][0] = 2

// Prints the modified element

println(simpleArray[0@].toString()) // 10
println(twoDArray[0][0].toString()) // 2

The Fundamentals of Kotlin

23

Mobile Application Development | week 2

Common Array Operations:

// Find element
val hasTwo = numbers.contains(2)
val indexOfThree = numbers.indexOf(3)

// Transform array

val doubled = numbers.map { it * 2 }.toTypedArray()
val filtered = numbers.filter { it > 3 }.toTypedArray()

// Sort array
numbers.sort() // In-place sorting

val sorted = numbers.sorted() // Returns new sorted list
val descendingSorted = numbers.sortedDescending()

Note: Some operations like map and filter return a List by default. Use
toTypedArray() to convert back to an Array if needed.

The Fundamentals of Kotlin

24

Mobile Application Development | week 2

Control Flow: if Statement

val score = 85

if (score >= 90) {
println("You got an A.")

}

val score = 75
if (score >= 90) {
println("You got an A.")
} else {
println("You got a B.")
}

val score = 65
if (score >= 90) {
println("You got an A.")
} else if (score >= 80) {
println("You got a B.")
} else {
println("You got a C.")
}

The Fundamentals of Kotlin

Mobile Application Development | week 2

If Expression

In Kotlin, if is an expression and can return a value.

// Basic usage

val max = if (a > b) {
println("Choosing a")
a // return value

1} else {
println("Choosing b")
b // return value

}

// Used as expression
val min = if (a < b) a else b

The Fundamentals of Kotlin

26

Mobile Application Development | week 2

When Expression

Description: Similar to switch in other languages, but more powerful.

val score = 85

val grade = when {
score >= 90 -> A
score >= 80 -> "B"
score >= 70 -> "C
score >= 60 -> D
else -> "F"

The Fundamentals of Kotlin 27

Mobile Application Development | week 2

When with parameter

when (x) {
1 -> println("x is 1")
2, 3 -> println("x is 2 or 3")
in 4..10 -> println("x is between 4 and 10")
else -> println("x is neither 1 nor 2")

The Fundamentals of Kotlin

28

Mobile Application Development | week 2

For Loop

// Range iteration
for (i in 1..5) {
println(i) // prints 1 to 5

}

// Collection iteration
val fruits = listOf("apple", "banana", "orange")
for (fruit in fruits) {
println(fruit)
}

// Iteration with index

for ((index, value) in fruits.withIndex()) {
println("$index: $value")
¥

The Fundamentals of Kotlin

29

Mobile Application Development | week 2

While and Do-While Loops

// while loop
val items = listOf("apple"”, "banana", "kiwifruit")

var index = 0
while (index < items.size) {

println("item at $index is ${items[index]}")
index++

}

// do-while loop

do {
println("Executed at least once")

} while (false)

The Fundamentals of Kotlin

30

Mobile Application Development | week 2

Functions

Description: Functions are blocks of reusable code.

// Basic function declaration

fun sayHello(name: String): String {
return "Hello, $name!"

}

// Single-expression function
fun double(x: Int) = x * 2

// Default parameters
fun greet(name: String = "Guest") = "Hello, $name!"

// Named parameters
fun createUser(name: String, age: Int, isStudent: Boolean) {
// function body

}
// Calling with named parameters
createUser(name = "Alice", age = 20, isStudent = true)

The Fundamentals of Kotlin

31

Mobile Application Development | week 2

Null Safety

Kotlin's type system distinguishes between nullable and non-nullable types.
In Kotlin, the type system distinguishes between types that can hold null (nullable

types) and those that cannot (non-nullable types). For example, a regular variable of

type String cannot hold null:

// Assigns a non-null string to a variable

var a: String = "abc"

// Attempts to re-assign null to the non-nullable variable
a = null

print(a)

// Null can not be a value of a non-null type String

The Fundamentals of Kotlin

32

Mobile Application Development | week 2

Null Safety: Declaring Nullable Variables

To allow null values, declare a variable with a ? sign right after the variable type. For
example, you can declare a nullable string by writing string? . This expression makes
String a type that can accept null:

// Assigns a nullable string to a variable

var b: String? = "abc"

// Successfully re-assigns null to the nullable variable
b = null

print(b)

// null

The Fundamentals of Kotlin

33

Mobile Application Development | week 2

Collections: List, Set, Map

The following collection types are relevant for Kotlin:

e List is an ordered collection with access to elements by indices — integer numbers
that reflect their position. Elements can occur more than once in a list.

e Set is a collection of unique elements. It reflects the mathematical abstraction of
set: a group of objects without repetitions. Generally, the order of set elements has
no significance.

e Map (or dictionary) is a set of key-value pairs. Keys are unique, and each of them
maps to exactly one value. The values can be duplicates. Maps are useful for
storing logical connections between objects.

The Fundamentals of Kotlin

34

Mobile Application Development | week 2

List

List<T> stores elements in a specified order and provides indexed access to them.

Indices start from zero — the index of the first element — and go to 1lastIndex which is
the (list.size - 1).

val numbers = 1listOf("one", "two", "three", "four")
println("Number of elements: ${numbers.size}")

println("Third element: ${numbers.get(2)}")

println("Fourth element: ${numbers[3]}")

println("Index of element ¥"two¥" ${numbers.indexOf("two")}")

The Fundamentals of Kotlin

35

Mobile Application Development | week 2

Set

Set<T> stores unique elements; their order is generally undefined. null elements are
unique as well: a set can contain only one null . Two sets are equal if they have the
same size, and for each element of a set there is an equal element in the other set.

val numbers = setOf(1, 2, 3, 4)
println("Number of elements: ${numbers.size}")
if (numbers.contains(1l)) println("1l is in the set")

val numbersBackwards = setOf(4, 3, 2, 1)
println("The sets are equal: ${numbers == numbersBackwards}")

The Fundamentals of Kotlin

36

Mobile Application Development | week 2

Map

Map<K, V> is not an inheritor of the collection interface; however, it's a Kotlin
collection type as well. A Map stores key-value pairs (or entries); keys are unique, but
different keys can be paired with equal values. The Map interface provides specific
functions, such as access to value by key, searching keys and values, and so on.

val numbersMap = mapOf(“"keyl" to 1, "key2" to 2, "key3" to 3, "keyd4" to 1)

println("All keys: ${numbersMap.keys}")
println("All values: ${numbersMap.values}")
if ("key2" in numbersMap) println("Value by key ¥"key2¥": ${numbersMap["key2"]}")

if (1 in numbersMap.values) println("The value 1 is in the map")
if (numbersMap.containsValue(1l)) println("The value 1 is in the map")

37

The Fundamentals of Kotlin

Mobile Application Development | week 2

Collections: types

Kotlin provides both immutable(read-only) and mutable collections.

// List
val readOnlylList = listOf(1, 2, 3)
val mutablelist = mutableListOf(1, 2, 3)

// Set
val readOnlySet = setOf(1, 2, 3)
val mutableSet = mutableSetOf(1, 2, 3)

// Map
val readOnlyMap = mapOf("a" to 1, "b" to 2)

val mutableMap = mutableMapOf("a" to 1, "b" to 2)

The Fundamentals of Kotlin

Mobile Application Development | week 2

MutableList<T>

MutableList<T> isa List with list-specific write operations, for example, to add or
remove an element at a specific position.

val numbers = mutablelListOf(1, 2, 3, 4)
numbers.add(5)

numbers.removeAt (1)

numbers[0] = ©

numbers.shuffle()

println(numbers)

The Fundamentals of Kotlin

39

Mobile Application Development | week 2

MutableSet<T>

MutableSet<T> Is a Set with set-specific write operations, for example, to add or
remove an element.

val numbers = mutableSetOf(1, 2, 3, 4)
numbers.add(5)

numbers.remove(1)
println(numbers)

The Fundamentals of Kotlin

40

Mobile Application Development | week 2

MutableMap<K, V>

MutableMap<K, V> is a Map with map-specific write operations, for example, to add or
remove a key-value pair.

val numbersMap = mutableMapOf("one" to 1, "two" to 2)
numbersMap.put("three", 3)

numbersMap["one"] = 100

println(numbersMap)

The Fundamentals of Kotlin

41

Difference between Array and List in Kotlin

Feature Array List
Size Fixed Variable
Can be accessed directly, but
Access Direct access, efficient efficiency might be lower than
arrays
. . . Rich operations, supports various
Operations Basic operations .p : PP
functional operations
For fixed-size data and frequent For data with variable size and
Use Cases

element access

various operations

Mobile Application Development | week 2

When to Use Array or List?

*Array:
*\WWhen storing fixed-size data.
*When frequent element access is required.
*When performance is a high priority.
List:
*\When storing data with a variable size.
*When dynamic add, remove, and update operations are needed.
*\When code readability and conciseness are preferred.

The Fundamentals of Kotlin

43

Mobile Application Development | week 2

User Input

Getting input from the user is essential in programming when you want your
application to interact with the user by receiving data that the user provides. In Kotlin,
you can receive user input from the console using the standard library functions,
making your programs interactive and dynamic.

If you want to ask the user for input and display it, you can use the combination of
println() to show a message and readln() to get the user’s response.

println("Please enter your name:")
val name = readln()
println("Hello, $name!")

The Fundamentals of Kotlin

44

Mobile Application Development | week 2

Practice program: Rock Paper Scissors Game

Task Description

Create a command-line Rock Paper Scissors game where a player competes against the

computer.

Requirements

1. Player can input their choice (1 for Rock, 2 for Scissors, 3 for Paper)
2. Computer randomly generates its choice

3. Game displays both choices and determines the winner

4. Player can exit the game by entering 0

5. Invalid inputs should be handled appropriately

The Fundamentals of Kotlin

45

Mobile Application Development | week 2

Game Rules

e Rock beats Scissors
e Scissors beats Paper

o Paper beats Rock

e Same choices result in a tie

Technical Requirements
. Language: Kotlin
. Interface: Command-line

e Input: Standard input (keyboard)

o Output: Text display of choices and results

The Fundamentals of Kotlin

46

Mobile Application Development | week 2

Expected Output Example

Please enter your choice (1 for Rock, 2 for Scissors, 3 for Paper, 0 to exit):

1

You chose Rock

The computer chose Paper
You lose!

The Fundamentals of Kotlin

47

	スライド 1: Mobile Application Development
	スライド 2: The Fundamentals of Kotlin
	スライド 3: Kotlin Reference
	スライド 4: Creating a New Android Project
	スライド 5: Adding Your First kotlin file
	スライド 6
	スライド 7: Writing your first Kotlin program
	スライド 8: What are Variables?
	スライド 9: Creating Variables in Kotlin
	スライド 10: val :
	スライド 11: var :
	スライド 12: Datatypes
	スライド 13: Integers (Int and Long)
	スライド 14: Floats and Doubles (Float and Double)
	スライド 15: Characters (Char)
	スライド 16: Strings (String)
	スライド 17: String Formatting
	スライド 18: Boolean (Boolean)
	スライド 19: Logical Operators
	スライド 20: Arrays
	スライド 21: Use the Array constructor to create an array of a specific size.
	スライド 22: Nested arrays
	スライド 23: Access and modify elements
	スライド 24: Common Array Operations:
	スライド 25: Control Flow: if Statement
	スライド 26: If Expression
	スライド 27: When Expression
	スライド 28: When with parameter
	スライド 29: For Loop
	スライド 30: While and Do-While Loops
	スライド 31: Functions
	スライド 32: Null Safety
	スライド 33: Null Safety: Declaring Nullable Variables
	スライド 34: Collections: List, Set, Map
	スライド 35: List
	スライド 36: Set
	スライド 37: Map
	スライド 38: Collections: types
	スライド 39: MutableList<T>
	スライド 40: MutableSet<T>
	スライド 41: MutableMap<K, V>
	スライド 42: Difference between Array and List in Kotlin
	スライド 43: When to Use Array or List?
	スライド 44: User Input
	スライド 45: Practice program: Rock Paper Scissors Game
	スライド 46: Game Rules
	スライド 47: Expected Output Example

