Mobile Application Development | week3

\Vobile Application
Development

Week3 The Object-oriented Programming of Kotlin

Yi SUN
Kobe Institute of Computing

obe Institute o nouting

Mobile Application Development | week3

The Object-oriented Programming of Kotlin

Class and Instance

Object-oriented Programming
« Write CLASSES to represent real-world.

« Create objects base on these classes = instances

e In Kotolin

« Attribute = Property
« Method = function

Class

Variables

age=15
name = "Bob”
greeting =“Howdy!”

. print()
print() inputQ input()
output()
\ @ output() — -

Z oth 06" Procedures

integer age

string name
string greeting

print() input(

output()

https://en.wikibooks.org/wiki/A-level Computing/AQA/Paper_1/Fundamentals_of programming/Elements_of Object-Oriented Programming
https://kotlinlang.org/docs/classes.html

Creating a Class

class name

class Dog(val name: Stringj val age: Int) {

pu
fun Slt() { - define a sit() function for the Dog Class

printin("¥$name is now sitting.")

}

pe
fun I’Ollover() { « define a roll_over() function for the Dog Class

printin("¥$name rolled over!")

}
}

Making an Instance from a Class

example

fun main() {
val myDog — Dog("Wi”ie", 6) « create an instance of Dog class

printin("My dog's name is ${myDog.name}.")
printin("My dog is ${myDog.age} years old.")

}

result

My dog's name is Willie.
My dog is 3 years old.

Calling functions

example

fun main() {
val myDog = Dog("Willie", 6)

myDog.sit()
myDog.rollOver()
]

result

Willie I1s now sitting.
Willie rolled over!

Creating Multiple Instances

example

fun main() {
val myDog = Dog("Willie", 6)
val yourDog = Dog("Lucy", 3)

printin("My dog's name is ${myDog.name}.")
printin("My dog is ${myDog.age} years old.")
myDog.sit()

printin("Your dog's name is ${yourDog.name}.")
printin("Your dog is ${yourDog.age} years old.")
yourDog.sit()

}

result

My dog's name is Willie.
My dog is 6 years old.
Willie is now sitting.

Your dog's name is Lucy.
Your dog is 3 years old.
Lucy is now sitting.

Working with Classes and Instances

example: Car class

class Car(val make: String, val model: String, val year: Int) {
fun getDescriptiveName(): String {
return "$year $make $model"

}
}

fun main() {
val myNewCar = Car("Audi", "A4", 2019)
printin(myNewCar.getDescriptiveName())

}

Setting a Default Value for a property

fun getDescriptiveName(): String {
return "$year $make $model"

}

class Car(val make: String, val model: String, val year: Int) {
var odometerReading: Int = 0 « Add a property in the Car class
with a default value

fun readOdometer() {
printin("This car has $odometerReading miles on it.")
}

}

fun main() {
val myNewCar = Car("Audi", "A4", 2019)
printin(myNewCar.getDescriptiveName())
myNewCar.readOdometer()

}

1'

A new function
to access the
odometer data

NModitying a property’'s Value Directly

example

fun main() {
val myNewCar = Car("Audi", "A4", 2019)

printin(myNewCar.getDescriptiveName())
myNewCar.odometerReading = 23
myNewCar.readOdometer()

result

2019 Audi A4
This car has 23 miles on it.

10

|\/|od|fymg a property’'s Value Through a function

example

class Car(val make: String, val model: String, val year: Int) {
var odometerReading: Int =0

fun getDescriptiveName(): String {
return "$year $make $model"

}

fun readOdometer() {
printin("This car has $odometerReading miles on it.")

}
fun updateOdometer(mileage: Int) {
odometerReading = mileage
}
}
fun main() {

val myNewCar = Car("Audi”, "A4", 2019)
myNewCar.odometerReading = 23
myNewCar.readOdometer()
myNewCar.updateOdometer(100)
myNewCar.readOdometer()

}

A new function to update
the data of object

result

This car has 23 miles on it.
This car has 100 miles on it.

11

Inheritance

parent class

properties:A, B

functions:M1(),M2()

properties:A, B, C
functions:M1(),M2(), M3()

properties:A, B, D
functions:M1(),M2(), M4()

12

Inheritance in Kotlin

example /

class ElectricCar(make: String, model: String, year: Int) :|Car(make, model, year)({
// No additional properties or functions for now

}

fun main() {
val myTesla = ElectricCar("Tesla", "Model S", 2019)

printin(myTesla.getDescriptiveName())

}

In Kotlin, classes are final by default, which means they cannot be

inherited unless explicitly marked as Open To allow inheritance,
modify the Car class as follows:

open|class Car(val make: String, val model: String, val year: Int) {

}

parent class

13

Defining Attributes and Methods for the Child Class

example

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {
private var batterySize: Int = 75

« The original property of ElectricCar class

fun d_escribeI_Battery() 1 _ The original function() of
printin("This car has a $batterySize-kWh battery.") ElectricCar class
}
}
fun main() {

val myTesla = ElectricCar("Tesla", "Model S", 2019)
printin(myTesla.getDescriptiveName())
myTesla.describeBattery()

}

result

2019 Tesla Model S
This car has a 75-kWh battery.

14

Overriding functions from the Parent Class

example
Add a new open function fillGasTank in Car class file

open fun fillGasTank() {
printin("Filling the gas tank.")

}

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {
private var batterySize: Int = 75

fun describeBattery() {
printin("This car has a $batterySize-kWh battery.")

}

override fun fillGasTank() {{ «—— overriding the fill_gas_tank() method
printin("This car doesn't need a gas tank!")

}

}
result
2019 Tesla Model S

This car has a 75-kWh battery.
This car doesn't need a gas tank!

Instances as property

example

open class Car(val make: String, val model: String, val year: Int) {
var odometerReading: Int =0

fun getDescriptiveName(): String {
return "$year $make $model".replaceFirstChar { it.uppercase() }

}
}

class|Battery(pivate val batterySize: Int = 75) {
fun describeBattery() {
printin("This car has a $batterySize-kWh battery.")

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {
val battery = [Battery()

}

fun main() {
val myTesla = ElectricCar("Tesla", "Model S", 2019)
printin(myTesla.getDescriptiveName())
myTesla.battery.describeBattery()
} 16

Data Class

Special classes designed to hold data with automatically generated utility functions.

data class Person(val name: String, val age: Int, val city: String)

fun main() {
// Creating instances
val person1 = Person("Alice", 25, "Tokyo")
val person2 = Person("Alice", 25, "Tokyo")
val person3 = Person("Bob", 30, "Kobe")

// [1] equals() - Checks if two objects have the same property values
printin("person1 equals person2: ${person1 == person2}") // true
printin("person1 equals person3: ${person1 == person3}") // false

// (2] hashCode() - Generates a unique hash code based on property values
printin("person1 hashCode: ${person1.hashCode()}")

printin("person2 hashCode: ${person2.hashCode()}") // Same as personi
printin("person3 hashCode: ${person3.hashCode()}") // Different

// [3] toString() - Returns a string representation
printin("person1 toString(): $person1")
// Output: Person(name=Alice, age=25, city=Tokyo)

// (%] copy() - Creates a new object with optionally modified properties
val person4 = person1.copy(age = 26, city = “Kampala")
printin("person4 (copied with new age and city): $person4")

// Output: Person(name=Alice, age=26, city=Kampala)

// (5] componentN() - Used for destructuring
val (name, age, city) = person1
printin("Destructured values: Name=%name, Age=%$age, City=$city")

17

Kotlin Programming Practice

Bank Account Management System

Objective
*Implement a simple Bank Account Management System using Kotlin.
*Understand class creation,property, and functions in Kotlin.

Task Overview

You are required to implement a BankAccount class that supports:
1.Deposits

2.Withdrawals

3.Transaction History Logging

4.Displaying Transaction History

After implementing the class, write a main function that demonstrates its functionality.

18

Requirements

1. BankAccount Class

*The class should contain the follow properties:
accountHolder: The name of the account holder.

balance: The account balance.
* A private list to store transaction history.

2.Functions
deposit(amount: Double): Adds money to the balance and logs the transaction.
withdraw(amount: Double): Deducts money from the balance if funds are
sufficient, otherwise prints an error.
displayTransactionHistory(): Prints all transactions made.

19

Code Example

Your implementation should match the following expected behavior:

fun main(){
val sunyiBankAccount = BankAccount("Yi Sun", 100.00)
sunyiBankAccount.deposit(10.00)
printin(sunyiBankAccount.balance)
sunyiBankAccount.withdraw(80.00)
printin(sunyiBankAccount.balance)
sunyiBankAccount.deposit(500.0)
sunyiBankAccount.withdraw(1300.0)
sunyiBankAccount.displayTransactionHistory()

20

Expected Output

110.0

30.0

You don't have the funds to withdraw $1300.0 Transcation history for Yi Sun
Yi Sun deposited $10.0

Yi Sun withdrew $80.0

Yi Sun deposited $500.0

21

	スライド 1: Mobile Application Development
	スライド 2: The Object-oriented Programming of Kotlin
	スライド 3: Object-oriented Programming
	スライド 4: Creating a Class
	スライド 5: Making an Instance from a Class
	スライド 6: Calling functions
	スライド 7: Creating Multiple Instances
	スライド 8: Working with Classes and Instances
	スライド 9: Setting a Default Value for a property
	スライド 10: Modifying a property’s Value Directly
	スライド 11: Modifying a property’s Value Through a function
	スライド 12: Inheritance
	スライド 13: Inheritance in Kotlin
	スライド 14: Defining Attributes and Methods for the Child Class
	スライド 15: Overriding functions from the Parent Class
	スライド 16: Instances as property
	スライド 17: Data Class
	スライド 18: Kotlin Programming Practice
	スライド 19
	スライド 20: Code Example
	スライド 21: Expected Output

