
Mobile Application
Development

Week3 The Object-oriented Programming of Kotlin

Mobile Application Development | week3

1

The Object-oriented Programming of Kotlin

Class and Instance

2

Mobile Application Development | week3

Object-oriented Programming
• Write CLASSES to represent real-world.

• Create objects base on these classes = instances

• In Kotolin
• Attribute = Property

• Method = function

3

https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_programming/Elements_of_Object-Oriented_Programming

https://kotlinlang.org/docs/classes.html

class Dog(val name: String, val age: Int) {

fun sit() {

println("¥$name is now sitting.")

}

fun rollOver() {

println("¥$name rolled over!")

}

}

Creating a Class

4

class name

define a sit() function for the Dog Class

define a roll_over() function for the Dog Class

fun main() {

val myDog = Dog("Willie", 6)

println("My dog's name is ${myDog.name}.")

println("My dog is ${myDog.age} years old.")

}

Making an Instance from a Class

5

example

My dog's name is Willie.

My dog is 3 years old.

result

create an instance of Dog class

fun main() {

val myDog = Dog("Willie", 6)

myDog.sit()

myDog.rollOver()

}

Calling functions

6

example

Willie is now sitting.

Willie rolled over!

result

Creating Multiple Instances

7

My dog's name is Willie.

My dog is 6 years old.

Willie is now sitting.

Your dog's name is Lucy.

Your dog is 3 years old.

Lucy is now sitting.

result

example

fun main() {

val myDog = Dog("Willie", 6)

val yourDog = Dog("Lucy", 3)

println("My dog's name is ${myDog.name}.")

println("My dog is ${myDog.age} years old.")

myDog.sit()

println("Your dog's name is ${yourDog.name}.")

println("Your dog is ${yourDog.age} years old.")

yourDog.sit()

}

Working with Classes and Instances

8

example: Car class

class Car(val make: String, val model: String, val year: Int) {

fun getDescriptiveName(): String {

return "$year $make $model"

}

}

fun main() {

val myNewCar = Car("Audi", "A4", 2019)

println(myNewCar.getDescriptiveName())

}

Setting a Default Value for a property

9

class Car(val make: String, val model: String, val year: Int) {

var odometerReading: Int = 0

fun getDescriptiveName(): String {

return "$year $make $model"

}

fun readOdometer() {

println("This car has $odometerReading miles on it.")

}

}

fun main() {

val myNewCar = Car("Audi", "A4", 2019)

println(myNewCar.getDescriptiveName())

myNewCar.readOdometer()

}

Add a property in the Car class
with a default value

A new function
to access the
odometer data

Modifying a property’s Value Directly

10

2019 Audi A4

This car has 23 miles on it.

result

example

fun main() {

val myNewCar = Car("Audi", "A4", 2019)

println(myNewCar.getDescriptiveName())

myNewCar.odometerReading = 23

myNewCar.readOdometer()

}

Modifying a property’s Value Through a function

11

This car has 23 miles on it.

This car has 100 miles on it.

result

example

class Car(val make: String, val model: String, val year: Int) {

 var odometerReading: Int = 0

 fun getDescriptiveName(): String {

 return "$year $make $model"

 }

 fun readOdometer() {

 println("This car has $odometerReading miles on it.")

 }

 fun updateOdometer(mileage: Int) {

 odometerReading = mileage

 }

}

fun main() {

 val myNewCar = Car("Audi", "A4", 2019)

 myNewCar.odometerReading = 23

 myNewCar.readOdometer()

 myNewCar.updateOdometer(100)

 myNewCar.readOdometer()

}

A new function to update
the data of object

Inheritance

12

parent class
properties:A, B

functions:M1(),M2()

child class
properties:A, B, C

functions:M1(),M2(), M3()

child class
properties:A, B, D

functions:M1(),M2(), M4()

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {

 // No additional properties or functions for now

}

fun main() {

 val myTesla = ElectricCar("Tesla", "Model S", 2019)

 println(myTesla.getDescriptiveName())

}

Inheritance in Kotlin

13

example
parent class

open class Car(val make: String, val model: String, val year: Int) {

…

}

In Kotlin, classes are final by default, which means they cannot be

inherited unless explicitly marked as open. To allow inheritance,
modify the Car class as follows:

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {

 private var batterySize: Int = 75

 fun describeBattery() {

 println("This car has a $batterySize-kWh battery.")

 }

}

fun main() {

 val myTesla = ElectricCar("Tesla", "Model S", 2019)

 println(myTesla.getDescriptiveName())

 myTesla.describeBattery()

}

Defining Attributes and Methods for the Child Class

14

example

The original property of ElectricCar class

The original function() of
ElectricCar class

2019 Tesla Model S

This car has a 75-kWh battery.

result

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {

 private var batterySize: Int = 75

 fun describeBattery() {

 println("This car has a $batterySize-kWh battery.")

 }

 override fun fillGasTank() {

 println("This car doesn't need a gas tank!")

 }

}

Overriding functions from the Parent Class

15

example

overriding the fill_gas_tank() method

2019 Tesla Model S

This car has a 75-kWh battery.

This car doesn't need a gas tank!

result

open fun fillGasTank() {

 println("Filling the gas tank.")

}

Add a new open function fillGasTank in Car class file

open class Car(val make: String, val model: String, val year: Int) {

 var odometerReading: Int = 0

 fun getDescriptiveName(): String {

 return "$year $make $model".replaceFirstChar { it.uppercase() }

 }

}

class Battery(private val batterySize: Int = 75) {

 fun describeBattery() {

 println("This car has a $batterySize-kWh battery.")

 }

}

class ElectricCar(make: String, model: String, year: Int) : Car(make, model, year) {

 val battery = Battery()

}

fun main() {

 val myTesla = ElectricCar("Tesla", "Model S", 2019)

 println(myTesla.getDescriptiveName())

 myTesla.battery.describeBattery()

}

Instances as property

16

example

data class Person(val name: String, val age: Int, val city: String)

fun main() {

 // Creating instances

 val person1 = Person("Alice", 25, "Tokyo")

 val person2 = Person("Alice", 25, "Tokyo")

 val person3 = Person("Bob", 30, "Kobe")

 // 1️⃣ equals() - Checks if two objects have the same property values

 println("person1 equals person2: ${person1 == person2}") // true

 println("person1 equals person3: ${person1 == person3}") // false

 // 2️⃣ hashCode() - Generates a unique hash code based on property values

 println("person1 hashCode: ${person1.hashCode()}")

 println("person2 hashCode: ${person2.hashCode()}") // Same as person1

 println("person3 hashCode: ${person3.hashCode()}") // Different

 // 3️⃣ toString() - Returns a string representation

 println("person1 toString(): $person1")

 // Output: Person(name=Alice, age=25, city=Tokyo)

 // 4️⃣ copy() - Creates a new object with optionally modified properties

 val person4 = person1.copy(age = 26, city = “Kampala")

 println("person4 (copied with new age and city): $person4")

 // Output: Person(name=Alice, age=26, city=Kampala)

 // 5️⃣ componentN() - Used for destructuring

 val (name, age, city) = person1

 println("Destructured values: Name=$name, Age=$age, City=$city")

}

Data Class

17

Special classes designed to hold data with automatically generated utility functions.

Kotlin Programming Practice

18

Bank Account Management System

Objective
•Implement a simple Bank Account Management System using Kotlin.
•Understand class creation,property, and functions in Kotlin.

Task Overview

You are required to implement a BankAccount class that supports:

1.Deposits

2.Withdrawals

3.Transaction History Logging

4.Displaying Transaction History

After implementing the class, write a main function that demonstrates its functionality.

19

Requirements

1. BankAccount Class
•The class should contain the follow properties:

• accountHolder: The name of the account holder.
• balance: The account balance.
• A private list to store transaction history.

2.Functions
• deposit(amount: Double): Adds money to the balance and logs the transaction.
• withdraw(amount: Double): Deducts money from the balance if funds are

sufficient, otherwise prints an error.
• displayTransactionHistory(): Prints all transactions made.

Code Example

20

Your implementation should match the following expected behavior:

fun main(){

 val sunyiBankAccount = BankAccount("Yi Sun", 100.00)

 sunyiBankAccount.deposit(10.00)

 println(sunyiBankAccount.balance)

 sunyiBankAccount.withdraw(80.00)

 println(sunyiBankAccount.balance)

 sunyiBankAccount.deposit(500.0)

 sunyiBankAccount.withdraw(1300.0)

 sunyiBankAccount.displayTransactionHistory()

}

Expected Output

21

110.0
30.0
You don't have the funds to withdraw $1300.0 Transcation history for Yi Sun
Yi Sun deposited $10.0
Yi Sun withdrew $80.0
Yi Sun deposited $500.0

	スライド 1: Mobile Application Development
	スライド 2: The Object-oriented Programming of Kotlin
	スライド 3: Object-oriented Programming
	スライド 4: Creating a Class
	スライド 5: Making an Instance from a Class
	スライド 6: Calling functions
	スライド 7: Creating Multiple Instances
	スライド 8: Working with Classes and Instances
	スライド 9: Setting a Default Value for a property
	スライド 10: Modifying a property’s Value Directly
	スライド 11: Modifying a property’s Value Through a function
	スライド 12: Inheritance
	スライド 13: Inheritance in Kotlin
	スライド 14: Defining Attributes and Methods for the Child Class
	スライド 15: Overriding functions from the Parent Class
	スライド 16: Instances as property
	スライド 17: Data Class
	スライド 18: Kotlin Programming Practice
	スライド 19
	スライド 20: Code Example
	スライド 21: Expected Output

