Mobile Application Development | week4

\Vobile Application
Development

Week4 First Android App by Jetpack Compose

Yi SUN
Kobe Institute of Computing

What is Jetpack Compose

« Jetpack Compose is Android’s modern toolkit for building
native user interfaces using a declarative approach.

 Instead of defining your Ul in XML files like in traditional
Android development, with Jetpack Compose you write Ul
code directly in Kotlin.

« This makes it easier to create dynamic, responsive, and
intuitive interfaces. Here's a beginner-friendly breakdown:

The keys of Jetpack Compose

e Declarative Ul

« Instead of describing how to update the Ul (imperative), you simply
describe what the Ul should look like based on its state. When the
state changes, Compose automatically updates the parts of the Ul
that need to change.

« Component-driven

 The Ul is built from small, reusable functions called composables.
These functions are annotated with @Composable and represent
individual parts of your Ul.

A New Project

Phone and Tablet
Wear OS
Television

Automotive

The first Android App by Jetpack compose

Open AndroidStudio

Select File > New > NewProject
Choose Empty Activity

Name: BMICalculator

/\\

/ Preview
rem——
]]
] ! *
]]
| Spepp—
No Activity Empty Activity/ Gemini API Starter

- uamw

Basic Views Activity Bottom Navigation Views Activity Empty Views Activity

= !/

A New Project

Empty Activity

Create a new empty activity with Jetpack Compose

Name BMICalcualtor Project Name
Package name ug.ac.uict.bmicalcualtor
Save location C:¥Users¥firrd¥AndroidStudioProjects¥BMICalcualtor
Minimum SDK API 24 ("Nougat"; Android 7.0) v
© Your app will run on approximately 97.4% of devices.
Help me choose
Build configuration language [Kotlin DSL (build.gradle.kts) [Recommended] ~

Previous

—
Cancel @

T

4

@Composable

« @Composable is an Annotation:

[t Enables Recomposition:
Changes in the underlying data trigger a re-execution of
the composable function to update the Ul.

* |t Supports Modularity:

* You can build complex Uls by composing small, reusable
functions, each responsible for a part of the screen.

« |t Simplifies Ul Development:

* By leveraging Kotlin's language features and Compose’s
runtime optimizations, you write less boilerplate code and
focus on describing what the Ul should look like.

Material Design and scaffold structure

 Material 3 is the latest version of Google's open-source design
system. Design and build beautiful, usable products with Material 3.

e https://m3.material.io/

e https://developer.android.com/reference/kotlin/androidx/compose/
material3/package-summary.html

* In Material Design, a scaffold is a fundamental structure that
provides a standardized platform for complex user interfaces. It holds
together different parts of the Ul, such as app bars and floating
action buttons, giving apps a coherent look and feel.

. h%pls(j//developer.android.com/develop/ui/compose/components/sc
affo

https://m3.material.io/
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary.html
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary.html
https://developer.android.com/develop/ui/compose/components/scaffold
https://developer.android.com/develop/ui/compose/components/scaffold

Suilding Layouts by @Composable

« Compose offers a variety of layout components (also called “layout
composables”) to arrange your Ul elements.
« Column: Stacks children vertically.
* Row: Places children horizontally.
« Box: Overlays children on top of each other.

Column Row Box

https://developer.android.com/develop/ui/compose/layouts/basics 7

https://developer.android.com/develop/ui/compose/layouts/basics

Compose modifiers

* Modifiers allow you to decorate or augment a composable.
Modifiers let you do these sorts of things:
« Change the composable's size, layout, behavior, and appearance
« Add information, like accessibility labels
* Process user input

« Add high-level interactions, like making an element clickable, scrollable,
draggable, or zoomable

 Modifiers are standard Kotlin objects. Create a modifier by calling
one of the Modifier class functions:

PUELR

@Composable
private fun Greeting(name: String) { I

Hello,

Android

Column(modifier = Modifier.padding(24.dp)) {
Text(text = "Hello,")
Text(text = name)

}

}

https://developer.android.com/develop/ui/compose/modifiers

https://developer.android.com/develop/ui/compose/modifiers

A sample of Column and Row

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->
Column(modifier = Modifier.padding(innerPadding)) {
Row{
Greeting("positionl")
Greeting("position2")
}
Row{
Greeting("position3")
Greeting("position4")

}
}
}

O MW < O 0 [

1M290 0 @ B
position1!position2!
position3!position4!

[< NG B
4l

Text and TextFielo

Scaffold(modifier = Maodifier.fillMaxSize()) { innerPadding ->
BMICalc(
modifier = Maodifier.padding(innerPadding)

)
}

@Composable
fun BMICalc(modifier: Modifier = Modifier){
Column(modifier = modifier) {
Text("BMI Calculator")
OutlinedTextField(value =", onValueChange = {})

}

10520 O & D
BMI Calculator

10

The type of TextField

e Filled

« Filled text fields have more visual emphasis than outlined text fields.
They're often used in dialogs and short forms where their style
draws more attention.

e Qutlined

« Qutlined text fields have less visual emphasis than filled text fields.
They're often used in long forms where their reduced emphasis
helps simplify the layout.

— Text field

Text field)
Filled Qutlined

Supporting text Supporting text

11

Preview the design

* Android Studio offers some features to extend composable
previews. You can change their container design, interact
with them, or deploy them directly to an emulator or device.

= @m + split the code
3~V [:B‘ \/Up—to—date WindOW and
rier) 1 .)
preview window

:ulator")

value =
@ Preview(showBackground = true)
@Composable
fun BMICalcPreview(){
PMicalc) o) ||l |

} 5

modifie 12

Button

Column(modifier = modifier) {
Text("BMI Calculator")
OutlinedTextField(value =

, onValueChange = {})

Row{

Button(onClick = {}) {
Text("Calc")

}

BMICalcPreview

EMI Calculator

https://developer.android.com/develop/ui/compose/components/button

13

https://developer.android.com/develop/ui/compose/components/button

Design the App

fun BMICalc(modifier: Modifier = Modifier){

Column(
modifier = modifier,

horizontal Alignment = Alignment.CenterHorizontally,

. Center

_ R
verticalArrangement = Arrangement.Center

) { BMICalcPreview
Text("BMI Calculator") S | TR
Spacer(modifier = Maodifier.height(20.dp)) pacer | ,
ROW{ Weight (ko)] Hsight (m

OutlinedTextField(Label) i
value ="". /

label = { Text("Weight (kg)") },

modifier = Modifier.weight(1f))

OutlinedTextField(

value="",
label = { Text("Height (m)") },

Each input field-is given a modifier
of Modifier.weight(1f), which

modifier = Modifier.weight(1f))

sures that they each take up an
equal portion of the available

)
}

horizontal space.

)
o

/

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/Arrangement

14

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/Arrangement

[oasts

* A toast provides simple feedback about an operation in a
small popup. It only fills the amount of space required for the
message and the current activity remains visible and
interactive. Toasts automatically disappear after a timeout.

https://developer.android.com/guide/topics/ui/notifiers/toasts

15

https://developer.android.com/guide/topics/ui/notifiers/toasts

Add a toast for Button onClick event

LocalContext: Provides the
Row{ / current Android context
val context = LocalContext.current needed for operations like

displ toast.
Button(onClick = { isplaying a toas

Toast. makeText(context
Toast: A simple pop-up message used to provide

"Calcuated the BMI", | feedback to the user.
Toast.LENGTH_LONG).show() Parameters:

}) { I_conl’c((:ext: The Android context obtained earlier via
T T ocalContext.current.
TeXt(Calc) "Calcuated the BMI": The message that will be
} displayed in the toast.
} Toast.LENGTH_LONG: Specifies that the toast
should be displayed for a long duration.
show(): Calling this method actually displays the
toast on the screen.

16

State Management

« Uses remember and mutableStateOf to handle user inputs
and the CoTputed result, u7dating the Ul reactively.

fun BMICalc(modifier: Moajfier = Modifier){ /

var weightlnput by remember { mutableState Of("") }
var heightlnput by remember { mutableStateOf("") }
var result by remember { mutableStateOf("") }

Update the TextField source code

Column(
modifier = modifier,

horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

)

Row{

OutlinedTextField(
value = weightinput,
onValueChange = { weightlnput =it },
label = { Text("Weight (kg)") },
modifier = Modifier.weight(1f))
OutlinedTextField(
value = heightlnput,
onValueChange = { heightinput =it },
label = { Text("Height (m)") },
modifier = Modifier.weight(1f))

17

Add the Button action to calculate BM|

Row{
val context = LocalContext.current
Button(onClick = {

val weight = weightlinput.toFloatOrNull()

val height = heightinput.toFloatOrNull()

if (weight == null || height == null || height <= 0f) {
result = "Please input the values"

} else {

1213 Q@ & & - b il |
ErI| Calculator

Va| bm| _ We|ght / (he|ght * he|ght) — Waight (kg) —— 3 httpswideveloper.android comirefor...
result = "BMI: %.2f".format(bmi) 70 ‘ 1.74
}
}) { Ealc:
Text("Calc")
} BMI: 22.50
}
Spacer(modifier = Modifier.height(24.dp))
Text(
text = result Show the result at screen
)

18

Use Box to design the Drop-Down Menu

Row {

Box(] Make it come to center
modifier = Modifier.weight(1f),
contentAlignment = Alignment.Center

A
Button(onClick={}) {
Text("kg")
lcon(lcons.Default. opDown, contentDescription = "Arrow Down")
}
}
Box(

modifier = Modifier.weight(1f),
contentAlignment = Alignment.Center
N
Button(onClick={}) {
Text("m"
Icon(lcons.Default. ArrowDropDown, contentDescription = "Arrow Down")

}
}
}

EMICalcPreview

B Saksutialor

Weight

—

} Haighi

https://developer.android.com/reference/kotlin/androidx/compose/material/icons/lcons.Filled

https://developer.android.com/reference/kotlin/androidx/compose/material/icons/Icons.Filled

Add the DropMenu Item and expand action

DropdownMenu(
expanded = true,
onDismissRequest = {},
){ 32O 0 ¢ A - vdl
DropdownMenultem(BMI Calculator
text = { Text("kg", textAlign = .Center, modifier = Modifier.fi
onClick = {} Weight Height
) I
DropdownMenultem(m o
text = { Text("g", textAlign = TextAlign. = Madifier.filMaxWidth()) }, ke m
onClick = {}
) e em
}

20

Make the Drop Menu can be select (1)

Setp 1. Prepare the variables

/[State variables to control the dropdown menus and store button widths.
var weightDropdownExpanded by remember { mutableStateOf(false) }
var heightDropdownExpanded by remember { mutableStateOf(false) }

// ' Unit selection state variables
var selectedWeightUnit by remember { mutableStateOf("kg") }
var selectedHeightUnit by remember { mutableStateOf("m") }

Setp 2. Use the states to change the Click and text status.

Button(
onClick = { weightDropdownExpanded = !'weightDropdownExpanded }
) {
Row {
Text(selectedWeightUnit)
Icon(lcons.Default.ArrowDropDown, contentDescription = "Arrow Down")
}

}

21

Make the Drop Menu can be select (2)

Setp3. Change the Unit Selection States

DropdownMenu(
expanded = weightDropdownExpanded,
onDismissRequest = { weightDropdownExpanded = false},

) {

DropdownMenultem(

onClick = {
selectedWeightUnit = "kg" the onClick callbacks now
weightDropdownExpanded = false [update the corresponding
} selected unit.

)

DropdownMenultem(
text = { Text("g", textAlign = TextAlign.Center, modifier = Modifier.fillMaxWidth()) },
onClick = {
selectedWeightUnit = "g"
weightDropdownExpanded = false

text = { Text("kg", textAlign = TextAlign.Center, modifier = Madifier.fillMaxWidth()) },

22

SMI Calculation Adjustments

Button(onClick = {
val weightVal = weightinput.toFloatOrNull()
val heightVal = heightlnput.toFloatOrNull()
if (weightVal == null || heightVal == null || heightVal <= 0f) {
result = "Please input valid values"
} else {
I/l Convert weight to kilograms if necessary
val weightlnKg = if (selectedWeightUnit == "g") weightVal / 1000f else weightVal
/[Convert height to meters if necessary
val heightInM = if (selectedHeightUnit == "cm") heightVal / 100f else heightVal
if (heightinM <= 0f) {
result = "Height must be greater than 0"
} else {
val bmi = weightinKg / (heightinM * heightinM)
result = "BMI: %.2f".format(bmi)

}
}

DA
Text("Calc")
}

4000 ¢ @ - A7 |
BMI Calculator

BMI: 25,97

23

Week 4 Assignment

 About the assignment of this week. Please practice the
teaching content covered this week and submit your work
after making appropriate modifications or improvements to
the code in the course materials.

 (For example, changing the font size, modifying the type of
text field, altering the shape of the button, or applying the
code to solve other computational problems.)

	スライド 1: Mobile Application Development
	スライド 2: What is Jetpack Compose
	スライド 3: The keys of Jetpack Compose
	スライド 4: The first Android App by Jetpack compose
	スライド 5: @Composable
	スライド 6: Material Design and scaffold structure
	スライド 7: Building Layouts by @Composable
	スライド 8: Compose modifiers
	スライド 9: A sample of Column and Row
	スライド 10: Text and TextField
	スライド 11: The type of TextField
	スライド 12: Preview the design
	スライド 13: Button
	スライド 14: Design the App
	スライド 15: Toasts
	スライド 16: Add a toast for Button onClick event
	スライド 17: State Management
	スライド 18: Add the Button action to calculate BMI
	スライド 19: Use Box to design the Drop-Down Menu
	スライド 20: Add the DropMenu Item and expand action
	スライド 21: Make the Drop Menu can be select (1)
	スライド 22: Make the Drop Menu can be select (2)
	スライド 23: BMI Calculation Adjustments
	スライド 24: Week 4 Assignment

