
Mobile Application
Development

Week4 First Android App by Jetpack Compose

Yi SUN

Kobe Institute of Computing

Mobile Application Development | week4

1

What is Jetpack Compose

• Jetpack Compose is Android’s modern toolkit for building
native user interfaces using a declarative approach.

• Instead of defining your UI in XML files like in traditional
Android development, with Jetpack Compose you write UI
code directly in Kotlin.

• This makes it easier to create dynamic, responsive, and
intuitive interfaces. Here’s a beginner-friendly breakdown:

2

The keys of Jetpack Compose

• Declarative UI
• Instead of describing how to update the UI (imperative), you simply

describe what the UI should look like based on its state. When the
state changes, Compose automatically updates the parts of the UI
that need to change.

• Component-driven
• The UI is built from small, reusable functions called composables.

These functions are annotated with @Composable and represent
individual parts of your UI.

3

The first Android App by Jetpack compose

4

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: BMICalculator

@Composable

•@Composable is an Annotation:
• It Enables Recomposition:

Changes in the underlying data trigger a re-execution of
the composable function to update the UI.

• It Supports Modularity:
• You can build complex UIs by composing small, reusable

functions, each responsible for a part of the screen.

• It Simplifies UI Development:
• By leveraging Kotlin’s language features and Compose’s

runtime optimizations, you write less boilerplate code and
focus on describing what the UI should look like.

5

Material Design and scaffold structure

• Material 3 is the latest version of Google’s open-source design
system. Design and build beautiful, usable products with Material 3.

• https://m3.material.io/

• https://developer.android.com/reference/kotlin/androidx/compose/
material3/package-summary.html

• In Material Design, a scaffold is a fundamental structure that
provides a standardized platform for complex user interfaces. It holds
together different parts of the UI, such as app bars and floating
action buttons, giving apps a coherent look and feel.

• https://developer.android.com/develop/ui/compose/components/sc
affold

6

https://m3.material.io/
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary.html
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary.html
https://developer.android.com/develop/ui/compose/components/scaffold
https://developer.android.com/develop/ui/compose/components/scaffold

Building Layouts by @Composable
• Compose offers a variety of layout components (also called “layout

composables”) to arrange your UI elements.
• Column: Stacks children vertically.

• Row: Places children horizontally.

• Box: Overlays children on top of each other.

7https://developer.android.com/develop/ui/compose/layouts/basics

https://developer.android.com/develop/ui/compose/layouts/basics

Compose modifiers
• Modifiers allow you to decorate or augment a composable.

Modifiers let you do these sorts of things:
• Change the composable's size, layout, behavior, and appearance
• Add information, like accessibility labels
• Process user input
• Add high-level interactions, like making an element clickable, scrollable,

draggable, or zoomable

• Modifiers are standard Kotlin objects. Create a modifier by calling
one of the Modifier class functions:

8

@Composable

private fun Greeting(name: String) {

 Column(modifier = Modifier.padding(24.dp)) {

 Text(text = "Hello,")

 Text(text = name)

 }

}

https://developer.android.com/develop/ui/compose/modifiers

https://developer.android.com/develop/ui/compose/modifiers

A sample of Column and Row

9

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 Column(modifier = Modifier.padding(innerPadding)) {

 Row{

 Greeting("position1")

 Greeting("position2")

 }

 Row{

 Greeting("position3")

 Greeting("position4")

 }

 }

}

Text and TextField

10

@Composable

fun BMICalc(modifier: Modifier = Modifier){

 Column(modifier = modifier) {

 Text("BMI Calculator")

 OutlinedTextField(value = "", onValueChange = {})

 }

}

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 BMICalc(

 modifier = Modifier.padding(innerPadding)

)

}

The type of TextField

• Filled
• Filled text fields have more visual emphasis than outlined text fields.

They're often used in dialogs and short forms where their style
draws more attention.

• Outlined
• Outlined text fields have less visual emphasis than filled text fields.

They're often used in long forms where their reduced emphasis
helps simplify the layout.

11

Preview the design

• Android Studio offers some features to extend composable
previews. You can change their container design, interact
with them, or deploy them directly to an emulator or device.

12

@Preview(showBackground = true)

@Composable

fun BMICalcPreview(){

 BMICalc()

}

split the code
window and
preview window

Button

13

Column(modifier = modifier) {

 Text("BMI Calculator")

 OutlinedTextField(value = "", onValueChange = {})

 Row{

 Button(onClick = {}) {

 Text("Calc")

 }

 }

}

https://developer.android.com/develop/ui/compose/components/button

https://developer.android.com/develop/ui/compose/components/button

Design the App

14

fun BMICalc(modifier: Modifier = Modifier){

Column(

modifier = modifier,

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center

) {

Text("BMI Calculator")

Spacer(modifier = Modifier.height(20.dp))

Row{

OutlinedTextField(

value = " ",

label = { Text("Weight (kg)") },

modifier = Modifier.weight(1f))

)

OutlinedTextField(

value = " ",

label = { Text("Height (m)") },

modifier = Modifier.weight(1f))

)

}

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/Arrangement

Center

Spacer

Label

Each input field is given a modifier
of Modifier.weight(1f), which
ensures that they each take up an
equal portion of the available
horizontal space.

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/Arrangement

Toasts

• A toast provides simple feedback about an operation in a
small popup. It only fills the amount of space required for the
message and the current activity remains visible and
interactive. Toasts automatically disappear after a timeout.

15
https://developer.android.com/guide/topics/ui/notifiers/toasts

https://developer.android.com/guide/topics/ui/notifiers/toasts

Add a toast for Button onClick event

16

Row{

 val context = LocalContext.current

 Button(onClick = {

 Toast.makeText(context,

 "Calcuated the BMI",

 Toast.LENGTH_LONG).show()

 }) {

 Text("Calc")

 }

}

LocalContext: Provides the
current Android context
needed for operations like
displaying a toast.

Toast: A simple pop-up message used to provide
feedback to the user.
Parameters:
context: The Android context obtained earlier via

LocalContext.current.
"Calcuated the BMI": The message that will be

displayed in the toast.
Toast.LENGTH_LONG: Specifies that the toast

should be displayed for a long duration.
show(): Calling this method actually displays the
toast on the screen.

State Management

• Uses remember and mutableStateOf to handle user inputs
and the computed result, updating the UI reactively.

17

fun BMICalc(modifier: Modifier = Modifier){

var weightInput by remember { mutableStateOf("") }

var heightInput by remember { mutableStateOf("") }

var result by remember { mutableStateOf("") }

Column(

modifier = modifier,

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center

)

Row{

OutlinedTextField(

value = weightInput,

onValueChange = { weightInput = it },

label = { Text("Weight (kg)") },

modifier = Modifier.weight(1f))

OutlinedTextField(

value = heightInput,

onValueChange = { heightInput = it },

label = { Text("Height (m)") },

modifier = Modifier.weight(1f))

}

Update the TextField source code

Add the Button action to calculate BMI

18

Row{

val context = LocalContext.current

Button(onClick = {

val weight = weightInput.toFloatOrNull()

val height = heightInput.toFloatOrNull()

if (weight == null || height == null || height <= 0f) {

result = "Please input the values"

} else {

val bmi = weight / (height * height)

result = "BMI: %.2f".format(bmi)

}

}) {

Text("Calc")

}

}

Spacer(modifier = Modifier.height(24.dp))

Text(

text = result

)
Show the result at screen

Use Box to design the Drop-Down Menu

19

Row {

Box(

modifier = Modifier.weight(1f),

contentAlignment = Alignment.Center

){

Button(onClick={}) {

Text("kg")

Icon(Icons.Default.ArrowDropDown, contentDescription = "Arrow Down")

}

}

Box(

modifier = Modifier.weight(1f),

contentAlignment = Alignment.Center

){

Button(onClick={}) {

Text("m")

Icon(Icons.Default.ArrowDropDown, contentDescription = "Arrow Down")

}

}

}

Make it come to center

https://developer.android.com/reference/kotlin/androidx/compose/material/icons/Icons.Filled

https://developer.android.com/reference/kotlin/androidx/compose/material/icons/Icons.Filled

Add the DropMenu Item and expand action

20

DropdownMenu(

expanded = true,

onDismissRequest = {},

) {

DropdownMenuItem(

text = { Text("kg", textAlign = TextAlign.Center, modifier = Modifier.fillMaxWidth()) },

onClick = {}

)

DropdownMenuItem(

text = { Text("g", textAlign = TextAlign.Center, modifier = Modifier.fillMaxWidth()) },

onClick = {}

)

}

Make the Drop Menu can be select (1)

21

Button(

onClick = { weightDropdownExpanded = !weightDropdownExpanded }

) {

Row {

Text(selectedWeightUnit)

Icon(Icons.Default.ArrowDropDown, contentDescription = "Arrow Down")

}
}

// State variables to control the dropdown menus and store button widths.

var weightDropdownExpanded by remember { mutableStateOf(false) }

var heightDropdownExpanded by remember { mutableStateOf(false) }

// Unit selection state variables

var selectedWeightUnit by remember { mutableStateOf("kg") }

var selectedHeightUnit by remember { mutableStateOf("m") }

Setp 1. Prepare the variables

Setp 2. Use the states to change the Click and text status.

Make the Drop Menu can be select (2)

22

DropdownMenu(

expanded = weightDropdownExpanded,

onDismissRequest = { weightDropdownExpanded = false},

) {

DropdownMenuItem(

text = { Text("kg", textAlign = TextAlign.Center, modifier = Modifier.fillMaxWidth()) },

onClick = {

selectedWeightUnit = "kg"

weightDropdownExpanded = false

}

)

DropdownMenuItem(

text = { Text("g", textAlign = TextAlign.Center, modifier = Modifier.fillMaxWidth()) },

onClick = {

selectedWeightUnit = "g"

weightDropdownExpanded = false

Setp3. Change the Unit Selection States

the onClick callbacks now
update the corresponding
selected unit.

Button(onClick = {

val weightVal = weightInput.toFloatOrNull()

val heightVal = heightInput.toFloatOrNull()

if (weightVal == null || heightVal == null || heightVal <= 0f) {

result = "Please input valid values"

} else {

// Convert weight to kilograms if necessary

val weightInKg = if (selectedWeightUnit == "g") weightVal / 1000f else weightVal

// Convert height to meters if necessary

val heightInM = if (selectedHeightUnit == "cm") heightVal / 100f else heightVal

if (heightInM <= 0f) {

result = "Height must be greater than 0"

} else {

val bmi = weightInKg / (heightInM * heightInM)

result = "BMI: %.2f".format(bmi)

}

}

}) {

Text("Calc")

}

BMI Calculation Adjustments

23

Week 4 Assignment

• About the assignment of this week. Please practice the
teaching content covered this week and submit your work
after making appropriate modifications or improvements to
the code in the course materials.

• (For example, changing the font size, modifying the type of
text field, altering the shape of the button, or applying the
code to solve other computational problems.)

24

	スライド 1: Mobile Application Development
	スライド 2: What is Jetpack Compose
	スライド 3: The keys of Jetpack Compose
	スライド 4: The first Android App by Jetpack compose
	スライド 5: @Composable
	スライド 6: Material Design and scaffold structure
	スライド 7: Building Layouts by @Composable
	スライド 8: Compose modifiers
	スライド 9: A sample of Column and Row
	スライド 10: Text and TextField
	スライド 11: The type of TextField
	スライド 12: Preview the design
	スライド 13: Button
	スライド 14: Design the App
	スライド 15: Toasts
	スライド 16: Add a toast for Button onClick event
	スライド 17: State Management
	スライド 18: Add the Button action to calculate BMI
	スライド 19: Use Box to design the Drop-Down Menu
	スライド 20: Add the DropMenu Item and expand action
	スライド 21: Make the Drop Menu can be select (1)
	スライド 22: Make the Drop Menu can be select (2)
	スライド 23: BMI Calculation Adjustments
	スライド 24: Week 4 Assignment

