Mobile Application Development | week5

\Vobile Application
Development

Weekb Advanced Ul Design

Yi SUN
Kobe Institute of Computing

Design a To-do List App

5370 9 ¢ @ - vail

Read a New Book

DeadLine: 02/03/2025 Ve]
Learn Python

DeadLine: 01/13/2025 ,‘ 'i'
Finish the assignment

DeadLine: 03/05/2025 Va [

Start a new Project

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity

4. Name: TodolList

A New Project X
A New Project X Empty Activity
- i - Preview Create a new empty activity with Jetpack Compose
- = :
rem—— [-]
Phone and Tablet 1 1 Name TndoUsII
|)
Wear OS ' '
Package name ug.ac.uicttodolist
- | Spepp—
Television
Automotive Save location C:¥Users¥firrd¥AndroidStudioProjects¥Todolist
No Activity Empty Activity Gemini API Starter

s R g e 12 -

© Your app will run on approximately 97.4% of devices.
Help me choose

Build configuration language Kotlin DSL (build.gradle kts) [Recommended] v
. 4w

Basic Views Activity Bottom Navigation Views Activity Empty Views Activity

= W7

Next Cancel

Previous Cancel

Add a Button to the screen

12520 0 @ & -

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->
Column (
modifier = Modifier.fillMaxSize().padding(innerPadding),
verticalArrangement = Arrangement.Center

)
Button(
onClick = {},
modifier = Modifier.align(Alignment.CenterHorizontally)
) {
Text("Add Task")
}
}

}

Adding the LazyColumn and the Data Class

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding -> data class Todoltem(

var todoltems by remember { mutableStateOf(listOf<Todoltem>()) } | | | —vahid:int,
Column () var name: String,

var deadline: String,

modifier\= Maodifier.fillMaxSize().padding(innerPadding), var isEditing: Boolean = false
verticalArrangement = Arrangement.Center) '
)
Button(
onClick\= {}, | ,
modifier, = Modifier.align(Alignment.CenterHorizontally) e o o
)

Text("Add Task")

}
LazyColumn(

modifier =\Modifier.fillMaxSize().padding(16.dp)
)

items(todoltems){

1 5

Move the Todoltem class to individual file

Make New file “TodoList.kt” and move the data class Todoltem to the new file.
and move the main screen design to new compose.

@Composable
: fun TodoListApp(modifier: Modifier = Modifier){
> [BDuitheme var todoltems by remember { mutableStateOf(listOf<Todoltem>()) }
(@ MainActivity Column (

modifier = Modifier.fillMaxSize().padding(16.dp),

[< Todolist.kt verticalArrangement = Arrangement.Center

i
Button(
onClick = {},
data class Todoltem(modifier = Modifier.align(Alignment.CenterHorizontally)
val id: Int,) {
var name: String, Text("Add Task")
var deadline: String, }
var isediting: Boolean = false LazyColumn(
) modifier = Modifier.fillMaxSize().padding(16.dp)
) {

items(todoltems){}

Setup a AlertDialog

fun TodoListApp(modifier: Modifier = Modifier){
var todoltems by remember { mutableStateOf(listOf<Todoltem>()) }
var showDialog by remember { mutableStateOf(false)}

Columr_l_(- Add a new var to
modifier = Modifier.fillMaxSize().padding(16.dp), remember the
verticalArrangement = Arrangement.Center button status

il .

Button(When click the button the

onClick ={ showDialog = true }, status become true
modifier = Modifier.align(Alignment.CenterHorizontally)

){
Text("Add Task")

}

if(showDialog){
AlertDialog(onDismissRequest = {showDialog=false}){

Text("This is a Alert Dialog")]]
} Add the BasicAlertDialog

} function

Modity the AlertDialog to Form

var itemName by remember { mutableStateOf("")}

var itemDeadline by remember { mutableStateOf("")} Add two var
if(showDialog){

AlertDialog(Change the
onDismissRequest = {showDialog=false}, AlertDialog to
confirmButton = {}, .
title = { Text("Add Todo ltem")}, Textfield
text = {

Column {

OutlinedTextField(
value = itemName,
onValueChange = {itemName = it},
singleLine = true,
modifier = Madifier.fillMaxWidth().padding(8.dp)

)
OutlinedTextField(

value = itemDeadline,

onValueChange = {itemDeadline = it},
singleLine = true,

modifier = Modifier.fillMaxWidth().padding(8.dp)

set up the confirmButton

onDismissRequest = {showDialog=false},
confirmButton = {
Row(
modifier = Modifier.fillMaxWidth().padding(8.dp),
horizontal Arrangement = Arrangement.SpaceBetween

)

Button(onClick = {
if(itemName.isNotBlank()){

val newltem = Todoltem(
id = todoltems.size+1,
name = itemName,
deadline = itemDeadline

)

todoltems = todoltems + newltem

showDialog = false

itemName = "“

itemDeadline ="

}

NA
Text("Add")
}

Button(onClick = { showDialog = false}){
Text("Cancel")
}

Design a new compose to show the

@Composable
fun TodoListltem(
item: Todoltem,
onEditClick: () -> Unit,
onDeleteClick: () -> Unit,
)il
Row(
modifier = Modifier.padding(8.dp).fillMaxWidth()
il
Text(text = item.name, modifier = Modifier.padding(8.dp))
}
}

0do item

LazyColumn(
modifier = Modifier.fillMaxSize().padding(16.dp)
) {
items(todoltems){
TodoListltem(it,{},{})

}
}

Add a new compose to show the
Todo item

Add the compose Lazy Column

10

Add the Button to the Todo item List

fun TodoListltem(
item: Todoltem,
onEditClick: () -> Unit,
onDeleteClick: () -> Unit,

A
Column(
modifier = Modifier.padding(8.dp).fillMaxWidth()
)i
Text(text = item.name, modifier = Modifier.padding(8.dp))
Row(modifier = Madifier.fillMaxWidth()){
Text(text = "DeadLine: ${item.deadline}", modifier = Modifier.padding(8.dp))
lconButton(onClick = onEditClick) {
lcon(imageVector = Icons.Default.Edit, contentDescription = "edit")
}
lconButton(onClick = onDeleteClick) {
lcon(imageVector = Icons.Default.Delete, contentDescription = "Delete")
}
}
}

44200 9 ¢ B

Add Task

Read a new book

DeadlLine: 2025/01/01 ,*

Test the new software

DeadLine: 2025/01/05 ,‘

11

vil

Add a new compose to edit the

Todo ltem

@Composable
fun TodoltemEditor(item: TodoltemlonEditComplete: (String, String) -> Unit)
var editedName by remember { mutableStateoOr(item.name)
var editedDeadline by remember { mutableStateOf(item.deadline) }
var isEditing by remember { mutableStateOf(item.isEditing) }
Row(
modifier = Modifier.fillMaxWidth().background(Color.White).padding(8.dp),
horizontalArrangement = Arrangement.SpaceEvenly
it
Column {
BasicTextField(
value = editedName,
onValueChange = {editedName = it},
singleLine = true,
modifier = Modifier.wrapContentSize().padding(8.dp)
)
BasicTextField(
value = editedDeadline,
onValueChange = {editedDeadline = it},
singleLine = true,
modifier = Modifier.wrapContentSize().padding@/

1
L

<\

)

}

Button(
onClick ={
isEditing = false
onEditComplete(editedName,editedDeadline)
}
A
Text("Save")
}
}

A callback function that is triggered
~ when editing is finished. It takes two

strings—the edited name and

deadline—as parameters.

The first BasicTextField displays and
allows editing of the editedName. It is
— set to single line and padded.The
second BasicTextField similarly
handles the editedDeadline value.

}

12

Finalizing the TodolList App

LazyColumn(
modifier = Modifier

fillMaxSize()
.padding(16.dp)
)
items(todoltems){
item ->

if(item.isEditing) {
TodoltemEditor(item = item, onEditComplete = { editedName, editedDeadline ->
/Il Step 1: Reset editing mode for all items
todoltems = todoltems.map { it.copy(isEditing = false) }
/Il Step 2: Locate the specific item being edited by matching its id
val editedltem = todoltems.find { it.id == item.id }
/] Step 3: If the item exists, update its name and deadline with the new values
editedltem?.let {
it.name = editedName
it.deadline = editedDeadline

}
)

} else{
TodoListltem(item = item, onEditClick = {
/l When edit is requested, mark this item as editing and others as not editing
todoltems = todoltems.map { it.copy(isEditing = it.id == item.id) }
}, onDeleteClick = {
// Remove the item from the list when delete is clicked
todoltems = todoltems - item

)

13

NMap method

fun main() {
val numbers = listOf(1,2,3)
val doubled = numbers.map{it * 2}
printin(doubled)

}

Result
12,4, 6]

You can test the source code from Kotlin Playground https://play.kotlinlang.org/

14

https://play.kotlinlang.org/

Copy method

fun main() {
val toyotal = Car(make = "Toyota", color="Red")
val toyota2 = toyotal.copy(color="White")
printin(toyotal)
printin(toyota?2)

}

data class Car(val make:String, val color:String)

Result

Car(make=Toyota, color=Red)
Car(make=Toyota, color=White)

15

op)

tring

fun main() {
val name:String? = "Mario"
printin(name.uppercase())

}

47

-

fun main() {
val name:String? = "Mario"
name?.let{
printin(name.uppercase())

}

}

Use let function to sately transtorm nullable

The error message

Only safe (?.) or non-null asserted
(11.) calls are allowed on a nullable
receiver of type String?

Result
MARIO

16

	スライド 1: Mobile Application Development
	スライド 2: Design a To-do List App
	スライド 3: Start a new Project
	スライド 4: Add a Button to the screen
	スライド 5: Adding the LazyColumn and the Data Class
	スライド 6: Move the TodoItem class to individual file
	スライド 7: Setup a AlertDialog
	スライド 8: Modify the AlertDialog to Form
	スライド 9: set up the confirmButton
	スライド 10: Design a new compose to show the Todo item
	スライド 11: Add the Button to the Todo item List
	スライド 12: Add a new compose to edit the Todo Item
	スライド 13: Finalizing the TodoList App
	スライド 14: Map method
	スライド 15: Copy method
	スライド 16: Use let function to safely transform nullable string

