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Design a To-do List App 
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Start a new Project
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1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: TodoList



Add a Button to the screen
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Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

    Column (

        modifier = Modifier.fillMaxSize().padding(innerPadding),

        verticalArrangement = Arrangement.Center

    ){

        Button(

            onClick = {},

            modifier = Modifier.align(Alignment.CenterHorizontally)

        ) {

            Text("Add Task")

        }

    }

}



Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

    var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

    Column (

        modifier = Modifier.fillMaxSize().padding(innerPadding),

        verticalArrangement = Arrangement.Center

    ){

        Button(

            onClick = {},

            modifier = Modifier.align(Alignment.CenterHorizontally)

        ) {

            Text("Add Task")

        }

        LazyColumn(

            modifier = Modifier.fillMaxSize().padding(16.dp)

        ) {

            items(todoItems){

            }

Adding the LazyColumn and the Data Class

5

data class TodoItem(

    val id: Int,

    var name: String,

    var deadline: String,

    var isEditing: Boolean = false

)



Move the TodoItem class to individual file
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Make New file “TodoList.kt” and move the data class TodoItem to the new file. 
and move the main screen design to new compose.

data class TodoItem(

    val id: Int,

    var name: String,

    var deadline: String,

    var isEditing: Boolean = false

)

@Composable

fun TodoListApp(modifier: Modifier = Modifier){

    var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

    Column (

        modifier = Modifier.fillMaxSize().padding(16.dp),

        verticalArrangement = Arrangement.Center

    ){

        Button(

            onClick = {},

            modifier = Modifier.align(Alignment.CenterHorizontally)

        ) {

            Text("Add Task")

        }

        LazyColumn(

            modifier = Modifier.fillMaxSize().padding(16.dp)

        ) {

            items(todoItems){}



Setup a AlertDialog
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fun TodoListApp(modifier: Modifier = Modifier){

    var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

    var showDialog by remember { mutableStateOf(false)}

    Column (

        modifier = Modifier.fillMaxSize().padding(16.dp),

        verticalArrangement = Arrangement.Center

    ){

        Button(

            onClick = { showDialog = true },

            modifier = Modifier.align(Alignment.CenterHorizontally)

        ) {

            Text("Add Task")

        }

if(showDialog){

    AlertDialog(onDismissRequest = {showDialog=false}){

        Text("This is a Alert Dialog")

    }

}

Add a new var to 
remember the 
button status

When click the button the 
status become true

Add the BasicAlertDialog
function



Modify the AlertDialog to Form
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var itemName by remember { mutableStateOf("")}

var itemDeadline by remember { mutableStateOf("")}

if(showDialog){

    AlertDialog(

        onDismissRequest = {showDialog=false},

        confirmButton = {},

        title = { Text("Add Todo Item")},

        text = {

            Column {

                OutlinedTextField(

                    value = itemName,

                    onValueChange = {itemName = it},

                    singleLine = true,

                    modifier = Modifier.fillMaxWidth().padding(8.dp)

                )

                OutlinedTextField(

                    value = itemDeadline,

                    onValueChange = {itemDeadline = it},

                    singleLine = true,

                    modifier = Modifier.fillMaxWidth().padding(8.dp)

                )

            }

Add two var

Change the 
AlertDialog to 
Textfield



set up the confirmButton
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onDismissRequest = {showDialog=false},

confirmButton = {

    Row(

        modifier = Modifier.fillMaxWidth().padding(8.dp),

        horizontalArrangement = Arrangement.SpaceBetween

    ){

        Button(onClick = {

            if(itemName.isNotBlank()){

                val newItem = TodoItem(

                    id = todoItems.size+1,

                    name = itemName,

                    deadline = itemDeadline

                )

                todoItems = todoItems + newItem

                showDialog = false
                itemName = "“

itemDeadline = ""

            }

        }) {

            Text("Add")

        }

        Button(onClick = { showDialog = false}){

            Text("Cancel")

        }

    }

},



Design a new compose to show the Todo item
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@Composable

fun TodoListItem(

    item: TodoItem,

    onEditClick: () -> Unit,

    onDeleteClick: () -> Unit,

){

    Row(

        modifier = Modifier.padding(8.dp).fillMaxWidth()

    ){

        Text(text = item.name, modifier = Modifier.padding(8.dp))

    }

}

LazyColumn(

    modifier = Modifier.fillMaxSize().padding(16.dp)

) {

    items(todoItems){

        TodoListItem(it,{},{})

    }

}

Add a new compose to show the 
Todo item

Add the compose Lazy Column



Add the Button to the Todo item List
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fun TodoListItem(

    item: TodoItem,

    onEditClick: () -> Unit,

    onDeleteClick: () -> Unit,

){

    Column(

        modifier = Modifier.padding(8.dp).fillMaxWidth()

    ){

        Text(text = item.name, modifier = Modifier.padding(8.dp))

        Row(modifier = Modifier.fillMaxWidth()){

            Text(text = "DeadLine: ${item.deadline}", modifier = Modifier.padding(8.dp))

            IconButton(onClick = onEditClick) {

                Icon(imageVector = Icons.Default.Edit, contentDescription = "edit")

            }

            IconButton(onClick = onDeleteClick) {

                Icon(imageVector = Icons.Default.Delete, contentDescription = "Delete")

            }

        }

    }



Add a new compose to edit the Todo Item
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@Composable

fun TodoItemEditor(item: TodoItem,onEditComplete: (String, String) -> Unit){

    var editedName by remember { mutableStateOf(item.name) }

    var editedDeadline by remember { mutableStateOf(item.deadline) }

    var isEditing by remember { mutableStateOf(item.isEditing) }

    Row(

        modifier = Modifier.fillMaxWidth().background(Color.White).padding(8.dp),

        horizontalArrangement = Arrangement.SpaceEvenly

    ){

        Column {

            BasicTextField(

                value = editedName,

                onValueChange = {editedName = it},

                singleLine = true,

                modifier = Modifier.wrapContentSize().padding(8.dp)

            )

            BasicTextField(

                value = editedDeadline,

                onValueChange = {editedDeadline = it},

                singleLine = true,

                modifier = Modifier.wrapContentSize().padding(8.dp)

            )

        }

        Button(

            onClick = {

                isEditing = false

                onEditComplete(editedName,editedDeadline)

        }

        ){

            Text("Save")

        }

    }

}

A callback function that is triggered 
when editing is finished. It takes two 
strings—the edited name and 
deadline—as parameters.

The first BasicTextField displays and 
allows editing of the editedName. It is 
set to single line and padded.The
second BasicTextField similarly 
handles the editedDeadline value.



LazyColumn(

    modifier = Modifier

        .fillMaxSize()

        .padding(16.dp)

) {

    items(todoItems){

        item ->

        if(item.isEditing) {

            TodoItemEditor(item = item, onEditComplete = { editedName, editedDeadline ->

                // Step 1: Reset editing mode for all items

                todoItems = todoItems.map { it.copy(isEditing = false) }

                // Step 2: Locate the specific item being edited by matching its id

                val editedItem = todoItems.find { it.id == item.id }

                // Step 3: If the item exists, update its name and deadline with the new values

                editedItem?.let {

                    it.name = editedName

                    it.deadline = editedDeadline

                }

            })

        } else {

            TodoListItem(item = item, onEditClick = {

                // When edit is requested, mark this item as editing and others as not editing

                todoItems = todoItems.map { it.copy(isEditing = it.id == item.id) }

            }, onDeleteClick = {

                // Remove the item from the list when delete is clicked

                todoItems = todoItems - item

            })

Finalizing the TodoList App
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Map method
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fun main() {

    val numbers = listOf(1,2,3)

    val doubled = numbers.map{it * 2}

    println(doubled)

}

[2, 4, 6]

Result

You can test the source code from Kotlin Playground https://play.kotlinlang.org/

https://play.kotlinlang.org/


Copy method
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fun main() {

    val toyota1 = Car(make = "Toyota", color="Red")

    val toyota2 = toyota1.copy(color="White")

    println(toyota1)

    println(toyota2)

}

data class Car(val make:String, val color:String)

Car(make=Toyota, color=Red)
Car(make=Toyota, color=White)

Result



Use let function to safely transform nullable 
string
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fun main() {

    val name:String? = "Mario"

    println(name.uppercase())

}

Only safe (?.) or non-null asserted 
(!!.) calls are allowed on a nullable 
receiver of type String?

The error message

fun main() {

    val name:String? = "Mario"

    name?.let{

        println(name.uppercase())

    }

}

Result

MARIO
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