
Mobile Application
Development

Week5 Advanced UI Design

Mobile Application Development | week5

1

Design a To-do List App

2

Start a new Project

3

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: TodoList

Add a Button to the screen

4

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 Column (

 modifier = Modifier.fillMaxSize().padding(innerPadding),

 verticalArrangement = Arrangement.Center

){

 Button(

 onClick = {},

 modifier = Modifier.align(Alignment.CenterHorizontally)

) {

 Text("Add Task")

 }

 }

}

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

 Column (

 modifier = Modifier.fillMaxSize().padding(innerPadding),

 verticalArrangement = Arrangement.Center

){

 Button(

 onClick = {},

 modifier = Modifier.align(Alignment.CenterHorizontally)

) {

 Text("Add Task")

 }

 LazyColumn(

 modifier = Modifier.fillMaxSize().padding(16.dp)

) {

 items(todoItems){

 }

Adding the LazyColumn and the Data Class

5

data class TodoItem(

 val id: Int,

 var name: String,

 var deadline: String,

 var isEditing: Boolean = false

)

Move the TodoItem class to individual file

6

Make New file “TodoList.kt” and move the data class TodoItem to the new file.
and move the main screen design to new compose.

data class TodoItem(

 val id: Int,

 var name: String,

 var deadline: String,

 var isEditing: Boolean = false

)

@Composable

fun TodoListApp(modifier: Modifier = Modifier){

 var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

 Column (

 modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center

){

 Button(

 onClick = {},

 modifier = Modifier.align(Alignment.CenterHorizontally)

) {

 Text("Add Task")

 }

 LazyColumn(

 modifier = Modifier.fillMaxSize().padding(16.dp)

) {

 items(todoItems){}

Setup a AlertDialog

7

fun TodoListApp(modifier: Modifier = Modifier){

 var todoItems by remember { mutableStateOf(listOf<TodoItem>()) }

 var showDialog by remember { mutableStateOf(false)}

 Column (

 modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center

){

 Button(

 onClick = { showDialog = true },

 modifier = Modifier.align(Alignment.CenterHorizontally)

) {

 Text("Add Task")

 }

if(showDialog){

 AlertDialog(onDismissRequest = {showDialog=false}){

 Text("This is a Alert Dialog")

 }

}

Add a new var to
remember the
button status

When click the button the
status become true

Add the BasicAlertDialog
function

Modify the AlertDialog to Form

8

var itemName by remember { mutableStateOf("")}

var itemDeadline by remember { mutableStateOf("")}

if(showDialog){

 AlertDialog(

 onDismissRequest = {showDialog=false},

 confirmButton = {},

 title = { Text("Add Todo Item")},

 text = {

 Column {

 OutlinedTextField(

 value = itemName,

 onValueChange = {itemName = it},

 singleLine = true,

 modifier = Modifier.fillMaxWidth().padding(8.dp)

)

 OutlinedTextField(

 value = itemDeadline,

 onValueChange = {itemDeadline = it},

 singleLine = true,

 modifier = Modifier.fillMaxWidth().padding(8.dp)

)

 }

Add two var

Change the
AlertDialog to
Textfield

set up the confirmButton

9

onDismissRequest = {showDialog=false},

confirmButton = {

 Row(

 modifier = Modifier.fillMaxWidth().padding(8.dp),

 horizontalArrangement = Arrangement.SpaceBetween

){

 Button(onClick = {

 if(itemName.isNotBlank()){

 val newItem = TodoItem(

 id = todoItems.size+1,

 name = itemName,

 deadline = itemDeadline

)

 todoItems = todoItems + newItem

 showDialog = false
 itemName = "“

itemDeadline = ""

 }

 }) {

 Text("Add")

 }

 Button(onClick = { showDialog = false}){

 Text("Cancel")

 }

 }

},

Design a new compose to show the Todo item

10

@Composable

fun TodoListItem(

 item: TodoItem,

 onEditClick: () -> Unit,

 onDeleteClick: () -> Unit,

){

 Row(

 modifier = Modifier.padding(8.dp).fillMaxWidth()

){

 Text(text = item.name, modifier = Modifier.padding(8.dp))

 }

}

LazyColumn(

 modifier = Modifier.fillMaxSize().padding(16.dp)

) {

 items(todoItems){

 TodoListItem(it,{},{})

 }

}

Add a new compose to show the
Todo item

Add the compose Lazy Column

Add the Button to the Todo item List

11

fun TodoListItem(

 item: TodoItem,

 onEditClick: () -> Unit,

 onDeleteClick: () -> Unit,

){

 Column(

 modifier = Modifier.padding(8.dp).fillMaxWidth()

){

 Text(text = item.name, modifier = Modifier.padding(8.dp))

 Row(modifier = Modifier.fillMaxWidth()){

 Text(text = "DeadLine: ${item.deadline}", modifier = Modifier.padding(8.dp))

 IconButton(onClick = onEditClick) {

 Icon(imageVector = Icons.Default.Edit, contentDescription = "edit")

 }

 IconButton(onClick = onDeleteClick) {

 Icon(imageVector = Icons.Default.Delete, contentDescription = "Delete")

 }

 }

 }

Add a new compose to edit the Todo Item

12

@Composable

fun TodoItemEditor(item: TodoItem,onEditComplete: (String, String) -> Unit){

 var editedName by remember { mutableStateOf(item.name) }

 var editedDeadline by remember { mutableStateOf(item.deadline) }

 var isEditing by remember { mutableStateOf(item.isEditing) }

 Row(

 modifier = Modifier.fillMaxWidth().background(Color.White).padding(8.dp),

 horizontalArrangement = Arrangement.SpaceEvenly

){

 Column {

 BasicTextField(

 value = editedName,

 onValueChange = {editedName = it},

 singleLine = true,

 modifier = Modifier.wrapContentSize().padding(8.dp)

)

 BasicTextField(

 value = editedDeadline,

 onValueChange = {editedDeadline = it},

 singleLine = true,

 modifier = Modifier.wrapContentSize().padding(8.dp)

)

 }

 Button(

 onClick = {

 isEditing = false

 onEditComplete(editedName,editedDeadline)

 }

){

 Text("Save")

 }

 }

}

A callback function that is triggered
when editing is finished. It takes two
strings—the edited name and
deadline—as parameters.

The first BasicTextField displays and
allows editing of the editedName. It is
set to single line and padded.The
second BasicTextField similarly
handles the editedDeadline value.

LazyColumn(

 modifier = Modifier

 .fillMaxSize()

 .padding(16.dp)

) {

 items(todoItems){

 item ->

 if(item.isEditing) {

 TodoItemEditor(item = item, onEditComplete = { editedName, editedDeadline ->

 // Step 1: Reset editing mode for all items

 todoItems = todoItems.map { it.copy(isEditing = false) }

 // Step 2: Locate the specific item being edited by matching its id

 val editedItem = todoItems.find { it.id == item.id }

 // Step 3: If the item exists, update its name and deadline with the new values

 editedItem?.let {

 it.name = editedName

 it.deadline = editedDeadline

 }

 })

 } else {

 TodoListItem(item = item, onEditClick = {

 // When edit is requested, mark this item as editing and others as not editing

 todoItems = todoItems.map { it.copy(isEditing = it.id == item.id) }

 }, onDeleteClick = {

 // Remove the item from the list when delete is clicked

 todoItems = todoItems - item

 })

Finalizing the TodoList App

13

Map method

14

fun main() {

 val numbers = listOf(1,2,3)

 val doubled = numbers.map{it * 2}

 println(doubled)

}

[2, 4, 6]

Result

You can test the source code from Kotlin Playground https://play.kotlinlang.org/

https://play.kotlinlang.org/

Copy method

15

fun main() {

 val toyota1 = Car(make = "Toyota", color="Red")

 val toyota2 = toyota1.copy(color="White")

 println(toyota1)

 println(toyota2)

}

data class Car(val make:String, val color:String)

Car(make=Toyota, color=Red)
Car(make=Toyota, color=White)

Result

Use let function to safely transform nullable
string

16

fun main() {

 val name:String? = "Mario"

 println(name.uppercase())

}

Only safe (?.) or non-null asserted
(!!.) calls are allowed on a nullable
receiver of type String?

The error message

fun main() {

 val name:String? = "Mario"

 name?.let{

 println(name.uppercase())

 }

}

Result

MARIO

	スライド 1: Mobile Application Development
	スライド 2: Design a To-do List App
	スライド 3: Start a new Project
	スライド 4: Add a Button to the screen
	スライド 5: Adding the LazyColumn and the Data Class
	スライド 6: Move the TodoItem class to individual file
	スライド 7: Setup a AlertDialog
	スライド 8: Modify the AlertDialog to Form
	スライド 9: set up the confirmButton
	スライド 10: Design a new compose to show the Todo item
	スライド 11: Add the Button to the Todo item List
	スライド 12: Add a new compose to edit the Todo Item
	スライド 13: Finalizing the TodoList App
	スライド 14: Map method
	スライド 15: Copy method
	スライド 16: Use let function to safely transform nullable string

