Mobile Application Development | week6

\Vobile Application
Development

Week6 MVVM Architecture
JSON, Retrofit, HTTP Requests and Restful APls

Yi SUN
Kobe Institute of Computing

MVVNM Architecture

« The Model-View-ViewModel (MVVM) architecture is a
design pattern that helps separate your app’s logic from its
Ul. This separation makes your code easier to understand,
maintain, and test.

https://developer.android.com/topic/architecture

https://developer.android.com/topic/architecture

Mode|

« The Model represents your data layer. This includes data
classes, database interactions, network calls, or any
repository pattern that fetches and stores data.

e Role:

It doesn't know anything about the Ul. Its job is to provide data to the
rest of your app.

ViewModel

 The ViewModel acts as a bridge between the Model and the
View. It holds and manages Ul-related data in a lifecycle-
CONnscious way.

* Role
[t fetches data from the Model.
[t processes or transforms data if needed.

e |t exposes the state (using tools like LiveData, StateFlow, or
Compose's mutableStateOf) that the Ul can observe.

[t handles user interactions forwarded by the View and updates the
state accordingly.

View

* In Jetpack Compose, the View is made up of @Composable
functions that define your Ul.

* Role
[t displays the Ul based on the state it observes from the ViewModel.

[t reacts to state changes automatically. When the state in the
ViewModel changes, Compose will recompose the Ul to reflect the
new state.

Demo
Counter App

« We are building a simple counter app.

 The ViewModel holds the counter value and updates it, while
the Composable functions render the UI.

1. Open AndroidStudio
2. Select File > New > NewProject

3. Choose Empty Activity
4. Name: CounterApp

The Counter App without Model

@Composable
fun TheCounterApp(modifier: Modifier=Modifier){
val count = remember { mutableStateOf(0) }
fun increment(){
count.value++

}

fun decrement(){
count.value--

}

Column(modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {

Text(text="Count: ${count.value}", fontSize = 24.sp, fontWeight =
FontWeight.Bold)
Spacer(modifier= Modifier.height(16.dp))
Row{
Button(onClick = {increment()}) {
Text("Increment”)
}
Button(onClick = {decrement()}) {
Text("Decrement")

Scaffold(modifier = Modifier.fillMaxSize()) {
innerPadding ->
TheCounterApp(
modifier = Modifier.padding(innerPadding)

)
}

Write a Compose to Count

Run the TheCounterApp() at
Main Screen

Count: 0

Convert the App by MVVM

« Add the Dependency
e Create a View Model
e Use the View Model at the View

Add the Dependency

 Make sure you’ve added the correct dependency in your
build.gradle (app-level) file:

v (&7 Gradle Scripts
fﬁE build.gradle.kts (Project: tteess)

EE build.gradle.kts (Module :app)

= proguard-rules.pro (ProGuard Rules for ":app”)
£33 gradle.properties (Project Properties)

{03 gradle-wrapper.properties (Gradle Version)
libs.versions.toml (Version Catalog)

£33 local.properties (SDK Location)

€2 settings.gradle kts (Project Settings)
K4 gs.g) g

=

dependencies {

implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")
Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

Cache/Index Issues:If everything seems correct but the

dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >

Invalidate Caches / Restart... in Android Studio.
9

Create a View Model
e New Kotlin Class file CounterViewModel.kt

a variable name with an underscore () is a naming

convention typically used to indicate that the variable is

"private”

class CounterViewModel : ViewModel() {
private val _count = mutableStateOf(0)
val count: MutableState<Int> = count

fun increment(){ \

count.value++ “count is a private mutable state,
} o while count is a public read-only state.
External code can only access the
fun decrement(){ value of _count through count.
_count.value--
}

}

10

Use the ViewModel at the View

fun TheCounterApp(
viewModel: CounterViewModel,
modifier: Modifier=Modifier){

Column(modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

)

Text(text="Count: ${viewModel.count.value}
fontSize = 24.sp,
fontWeight = FontWeight.Bold)
Spacer(modifier= Modifier.height(16.dp))
Row{

Button(onClick =[{viewModel.increment()}) {

Text("Increment")

}

Button(onClick =[{viewModel.decrement()}) {

Text("Decrement”)

class MainActivity : ComponentActivity() {
override fun onCreate(savedinstanceState: Bundle?) {
super.onCreate(savedlnstanceState)
enableEdgeToEdge()
setContent {

val viewModel: CounterViewModel = viewModel()

TteessTheme {
Scaffold(modifier = Modifier.fillMaxSize()) {
innerPadding ->
TheCounterApp(
viewModel,
modifier = Modifier.padding(innerPadding)

)
}

11

Add the Model for CounterApp

e New Kotlin Class CounterModel.kt

Define a data class to hold data, the
only one Property is a mutable

|data class CounterModel(var count : Int)

A

class CounterRepository{
private var counter = CounterModel(0)
fun getCounter() = _counter
fun incrementCounter(){
_counter.count++

}

fun decrementCounter(){
__counter.count--

}

integer (var) that represents a
counter's value.

The CounterRepository class
manages an instance of
CounterModel. It abstracts the logic
for modifying the counter, which is
useful for maintaining separation of
concerns (a concept in MVVM
architecture where data handling is

separated from Ul logic).
12

M Od HCy th e \/| e\/\/ M Od e‘ Add an instance of CounterRepository,

name to repository

class CounterViewModel() : ViewModel() { /

private val repository: CounterRepository = CounterRepositor
private val _count = mutableStateOf(_repository.getCounter().count
val count: MutableState<Int> = count /<

fun increment(){ et
_repository.incrementCounter() | - >° > TR tThaekienzqgndCaeta from

_count.value = repository.getCounter().count
} set the value from the

fun decrement(){ Instance
_repository.decrementCounter()
_count.value = _repository.getCounter().count

} same as the increment()

Shopping App

« We will learn how to fetch data from the Internet for Android
use by building a shopping app, as well as how to parse and
utilize JSON files, and how to display images on the screen.

Open AndroidStudio
Select File > New > NewProject

Choose Empty Activity
Name: ShoppingApp

Hwn =

14

Whatis JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language Standard ECMA-
262 3rd Edition - December 1999. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers of
the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python,
and many others. These properties make JSON an ideal data-interchange
language.

JSON is built on two structures:

A collection of name/value pairs. In various languages, this is realized as an object,
record, struct, dictionary, hash table, keyed list, or associative array.

*An ordered list of values. In most languages, this is realized as an array, vector, list,
or sequence.

https://www.json.org/json-en.html

https://jsonformatter.org

https://www.json.org/json-en.html
https://jsonformatter.org/

Understand the Structure of JSON

“name” A11ce ,

Ilage

"1sStudenf : false . .
"courses': ["Math", "Science", "History"],
address”:

street "123 Ma1n St"
c1ty New York
"zip "10001"

} }
Objects: The entire JSON is an object, indicated by the curly braces { }. Inside, there are
key/value pairs.

Keys and Values:

« "name": "Alice": The key is "name" and the value is "Alice", a string.

« "age": 30: The key is "age" with the numeric value 30.“

e isStudent": false: The key is "isStudent" with the boolean value false.

Arrays:

"courses": ["Math", "Science", "History"]: The key "courses" has an array as its value.
The array is indicated by square brackets |] and contains a list of strings.

Nested Objects:

"address": { ... }: The key "address" holds another object as its value. This nested object
contains its own set of key/value pairs, such as "street", "city", and "zip".

16

Use the Fake data API to get the JSON data

e https://fakestoreapi.com/

« fakeStoreApi can be used with any type of shopping project
that needs products, carts, and users in JSON format. you
can use examples below to check how fakeStoreApi works
and feel free to enjoy it in your awesome projects!

https://fakestoreapi.com/

Add the Dependencies Tor JSON & Network Calls

e Retrofit

 Retrofit is a popular HTTP client library for Android (and also Java
and Kotlin) that simplifies the process of making network requests
to web services. It's developed by Square and is widely used in the
Android development community.

dependencies {

implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")
iImplementation("com.squareup.retrofit2:retrofit:2.11.0")
implementation("com.squareup.retrofit2:converter-gson:2.11.0")
Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

https://square.github.io/retrofit/ 18

https://square.github.io/retrofit/

Add the Dependencies for image loading

* Coil is an image loading library for Android and Compose
Multiplatform.

dependencies {

implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")
implementation("com.squareup.retrofit2:retrofit:2.11.0")
implementation("com.squareup.retrofit2:converter-gson:2.11.0")
implementation(“io.coil-kt.coil3:coil-compose:3.1.0™)
implementation("io.coil-kt.coil3:coil-network-okhttp:3.1.0")
implementation(libs.androidx.core.ktx)

https://coil-kt.github.io/coil/

19

https://coil-kt.github.io/coil/

Create the Model Tor Product

'{

id": 1,
///////////////////:title": "Fjallraven -
"price”: 189.95
data class Product /j;:l S
_ ption : "Your |
val 1d: Int, / forest. Stash your :
val title: String, /

i _ “"category”: "men's clt
va prlce- DOUbIe; / “image": "https://tTaks
val description: String; /‘ratiﬂg'” {

: . - ‘////////////////// "rate": 3.9,
val Image: String

"count": 126

everyday",

},
1
"id": 2,

https://fakestoreapi.com/products "title": "Mens Casual
20

https://fakestoreapi.com/products

Add the Internet Permission

v [app

« Open the AndroidManifest.xml file from manifests folder, [0 manifests

and add the <user-permission> for network access 1| AndroidManifest.xml
v [Jkotlin+java

v [2] ug.acuict.shoppingapp
> [uitheme

<?xml version="1.0" encoding="utf-8"?>

<manifest xmins:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<uses-permission android:name="android.permission.INTERNET" />

Allows your app to open network
ockets and conhect to the internet.

<uses-permission android:name="android.permission.ACCESS NETWORK STATE" /> Lets your app
o T check the
<appI|ca_t|on network's state
android:allowBackup="true" and connectivity
android:dataExtractionRules="@xml/data_extraction_rules" status.

android:fullBackupContent="@xml/backup_rules" 21

Write an Interface for access the Internet resource

« Create a new Kotlin file, named ApiService.kt

Creates a builder instance to configure Retrofit.

private val retrofit = Retrofit.Builder().baseUrl("https://fakestoreapi.com/")

.addConverterFactory(GsonConverterFactory.create())

build()

val shoppingService = retrofit.create(ApiService::.class.java)

Interface ApiService{

@GET("products")

suspend fun|getProducts():List<Product>

Adds a converter factory for
serializing and deserializing JSON
data. Gson converts JSON
responses into Kotlin/Java objects.

Defining the API Service interface

This tells Retrofit to generate an
implementation of the ApiService

} \ interface. we can use to call the
Declaring the method as suspend means it can be APl endpoints.

called within a Kotlin coroutine, allowing for

asynchronous execution without blocking the main

thread.

22

Create the MainViewModel

e Create a new Kotlin class, named MainViewModel.kt

Step3. write a fetchProducts method to access to AP

Stepl. prepare a data class
to store the data from API

resource and store the response to productsState

data class ProductState(
val loading:Boolean = true,
val list: List<Product> = emptyList(),
val error: String? = null

)

Step?. prepare _productsState to hold
the mutable state of ProductState(),
and the public read-only productsState
expose the state to Ul.

private val _productsState =
mutableState Of(ProductState())

val productState: State<ProductState>
= productsState

private fun fetchProducts(){
viewModelScope.launch {
try{
val response = shoppingService.getProducts()
_productsState.value = _productsState.value.copy(
list = response,
loading = false,
error = null
)
}catch (e:Exception){
_productsState.value = _productsState.value.copy(
loading = false,
error = "Error fetching Products ${e.message}"

Step4. execute the fetchProducts() to fetch the data

init {
fetchProducts()

}

23

Create a view to show the products

« Create a new Kotlin file, named ShoppingtScreen.kt

@Composable
fun ShoppingScreen(modifier: Modifier = Modifier){
val productViewModel: MainViewModel = viewModel()
val viewstate by productViewModel.productState
Box(modifier = modifier.fillMaxSize()){
when{
viewstate.loading -> {
CircularProgressindicator(maodifier.align(Alignment.Center))
}
viewstate.error = null ->{
Text("Error occurred")

}

else ->{

}

24

Create a view Tor each product item in shopping view

@Composable
fun Productltem(product: Product){
Column(modifier = Modifier.padding(8.dp).fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally)
{

Image(
painter = rememberAsyncimagePainter(product.image),
contentDescription = "the picture of our products”,
modifier = Modifier.fillMaxSize().aspectRatio(1f)

)

Text(
text = product.title,
color = Color.Black,
style = TextStyle(fontWeight = FontWeight.Bold),
modifier = Modifier.padding(top=4.dp)

The image
of product

The title of
product

25

Create a view of products contain all the product items

A layout that efficiently displays
a grid of items, only composing
and laying out visible items,
which is ideal for long lists or

grids. /

@Composable
fun ProductScreen(products: ListsProduct>){

LazyVerticaIGridkpridCeIIs.Fixed(2), modifier = Modifier.fillMaxSize()) {

items(products){ lterates over the products list. For each Product in the list,

the lambda function is executed.
prOdUCt '>- Each element in the list is referred to as product.

Productltem(product = product)

Configures the grid
to have a fixed
number of columns

}

or every product in the list, a Productltem composable
} is called. This composable is responsible for rendering
} the individual product's Ul

Add the ProductScreen view to ShoppingScreen view

}

}

}

fun ShoppingScreen(modifier: Modifier = Modifier){
val productViewModel: MainViewModel = viewModel()
val viewstate by productViewModel.productState
Box(modifier = modifier.fillMaxSize()){
when{
viewstate.loading -> {

CircularProgressindicator(modifier.align(Alignment.Center))

viewstate.error != null ->{

Text(viewstate.error.toString())

else ->{

ProductScreen(products = viewstate.list)

\

Invoke the Pro
composable pa

ductScreen
1ssing the list of

producs from the state to

display them.

217

Add the ShoppingsScreen view to MainActivity

3160 @ 3G4AN

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

Fjallraven - Foldsack No. 1 Mens Casual Premium Slim

super.onCreate(savedinstanceState) .
enableEdgeToEdge() R}
setContent {
ShoppingAppTheme {
Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding -> e s
ShoppingScreen(Y
modifier = Modifier.padding(innerPadding) {{ ?)
}

28

	スライド 1: Mobile Application Development
	スライド 2: MVVM Architecture
	スライド 3: Model
	スライド 4: ViewModel
	スライド 5: View
	スライド 6: Demo Counter App
	スライド 7: The Counter App without Model
	スライド 8: Convert the App by MVVM
	スライド 9: Add the Dependency
	スライド 10: Create a View Model
	スライド 11: Use the ViewModel at the View
	スライド 12: Add the Model for CounterApp
	スライド 13: Modify the ViewModel
	スライド 14: Shopping App
	スライド 15: What is JSON
	スライド 16: Understand the Structure of JSON
	スライド 17: Use the Fake data API to get the JSON data
	スライド 18: Add the Dependencies for JSON & Network Calls
	スライド 19: Add the Dependencies for image loading
	スライド 20: Create the Model for Product
	スライド 21: Add the Internet Permission
	スライド 22: Write an Interface for access the Internet resource
	スライド 23: Create the MainViewModel
	スライド 24: Create a view to show the products
	スライド 25: Create a view for each product item in shopping view
	スライド 26: Create a view of products contain all the product items
	スライド 27: Add the ProductScreen view to ShoppingScreen view
	スライド 28: Add the ShoppingScreen view to MainActivity

