
Mobile Application
Development

Week6 MVVM Architecture
JSON, Retrofit, HTTP Requests and Restful APIs

Mobile Application Development | week6

1

MVVM Architecture

• The Model-View-ViewModel (MVVM) architecture is a
design pattern that helps separate your app’s logic from its
UI. This separation makes your code easier to understand,
maintain, and test.

2

https://developer.android.com/topic/architecture

https://developer.android.com/topic/architecture

Model

• The Model represents your data layer. This includes data
classes, database interactions, network calls, or any
repository pattern that fetches and stores data.

• Role:
It doesn't know anything about the UI. Its job is to provide data to the
rest of your app.

3

ViewModel

• The ViewModel acts as a bridge between the Model and the
View. It holds and manages UI-related data in a lifecycle-
conscious way.

• Role
• It fetches data from the Model.

• It processes or transforms data if needed.

• It exposes the state (using tools like LiveData, StateFlow, or
Compose's mutableStateOf) that the UI can observe.

• It handles user interactions forwarded by the View and updates the
state accordingly.

4

View

• In Jetpack Compose, the View is made up of @Composable
functions that define your UI.

• Role
• It displays the UI based on the state it observes from the ViewModel.

• It reacts to state changes automatically. When the state in the
ViewModel changes, Compose will recompose the UI to reflect the
new state.

5

Demo
Counter App
• We are building a simple counter app.

• The ViewModel holds the counter value and updates it, while
the Composable functions render the UI.

6

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: CounterApp

@Composable

fun TheCounterApp(modifier: Modifier=Modifier){

 val count = remember { mutableStateOf(0) }

 fun increment(){

 count.value++

 }

 fun decrement(){

 count.value--

 }

 Column(modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text="Count: ${count.value}", fontSize = 24.sp, fontWeight =

FontWeight.Bold)

 Spacer(modifier= Modifier.height(16.dp))

 Row{

 Button(onClick = {increment()}) {

 Text("Increment")

 }

 Button(onClick = {decrement()}) {

 Text("Decrement")

The Counter App without Model

7

Scaffold(modifier = Modifier.fillMaxSize()) {

innerPadding ->

 TheCounterApp(

 modifier = Modifier.padding(innerPadding)

)

}

Run the TheCounterApp() at
Main Screen

Write a Compose to Count

Convert the App by MVVM

• Add the Dependency

• Create a View Model

• Use the View Model at the View

8

Add the Dependency

• Make sure you’ve added the correct dependency in your
build.gradle (app-level) file:

9

dependencies {

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

• Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

• Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

Create a View Model
• New Kotlin Class file CounterViewModel.kt

10

class CounterViewModel : ViewModel() {

 private val _count = mutableStateOf(0)

 val count: MutableState<Int> = _count

 fun increment(){

 _count.value++

 }

 fun decrement(){

 _count.value--

 }

}

a variable name with an underscore (_) is a naming
convention typically used to indicate that the variable is
"private"

_count is a private mutable state,
while count is a public read-only state.
External code can only access the
value of _count through count.

Use the ViewModel at the View

11

fun TheCounterApp(

 viewModel: CounterViewModel,

 modifier: Modifier=Modifier){

 Column(modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text="Count: ${viewModel.count.value}",

 fontSize = 24.sp,

 fontWeight = FontWeight.Bold)

 Spacer(modifier= Modifier.height(16.dp))

 Row{

 Button(onClick = {viewModel.increment()}) {

 Text("Increment")

 }

 Button(onClick = {viewModel.decrement()}) {

 Text("Decrement")

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 val viewModel: CounterViewModel = viewModel()

 TteessTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) {

innerPadding ->

 TheCounterApp(

 viewModel,

 modifier = Modifier.padding(innerPadding)

)

 }

Add the Model for CounterApp

• New Kotlin Class CounterModel.kt

12

data class CounterModel(var count : Int)

class CounterRepository{

 private var _counter = CounterModel(0)

 fun getCounter() = _counter

 fun incrementCounter(){

 _counter.count++

 }

 fun decrementCounter(){

 _counter.count--

 }

The CounterRepository class
manages an instance of
CounterModel. It abstracts the logic
for modifying the counter, which is
useful for maintaining separation of
concerns (a concept in MVVM
architecture where data handling is
separated from UI logic).

Define a data class to hold data, the
only one Property is a mutable
integer (var) that represents a
counter's value.

Modify the ViewModel

13

class CounterViewModel() : ViewModel() {

 private val _repository: CounterRepository = CounterRepository()

 private val _count = mutableStateOf(_repository.getCounter().count)

 val count: MutableState<Int> = _count

 fun increment(){

 _repository.incrementCounter()

 _count.value = _repository.getCounter().count

 }

 fun decrement(){

 _repository.decrementCounter()

 _count.value = _repository.getCounter().count

 }

}

Add an instance of CounterRepository,
name to repository

Take the data from
the instance

Use the function in the
instance

set the value from the
instance

same as the increment()

Shopping App

• We will learn how to fetch data from the Internet for Android
use by building a shopping app, as well as how to parse and
utilize JSON files, and how to display images on the screen.

14

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: ShoppingApp

What is JSON

15

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language Standard ECMA-
262 3rd Edition - December 1999. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers of
the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python,
and many others. These properties make JSON an ideal data-interchange
language.

https://www.json.org/json-en.html

JSON is built on two structures:

•A collection of name/value pairs. In various languages, this is realized as an object,
record, struct, dictionary, hash table, keyed list, or associative array.
•An ordered list of values. In most languages, this is realized as an array, vector, list,
or sequence.

https://jsonformatter.org

https://www.json.org/json-en.html
https://jsonformatter.org/

Understand the Structure of JSON

16

{
"name": "Alice",
"age": 30,
"isStudent": false,
"courses": ["Math", "Science", "History"],
"address": {
"street": "123 Main St",
"city": "New York",
"zip": "10001"

}
}

Objects: The entire JSON is an object, indicated by the curly braces { }. Inside, there are
key/value pairs.
Keys and Values:
• "name": "Alice": The key is "name" and the value is "Alice", a string.
• "age": 30: The key is "age" with the numeric value 30.“
• isStudent": false: The key is "isStudent" with the boolean value false.
Arrays:
"courses": ["Math", "Science", "History"]: The key "courses" has an array as its value.
The array is indicated by square brackets [] and contains a list of strings.
Nested Objects:
"address": { ... }: The key "address" holds another object as its value. This nested object
contains its own set of key/value pairs, such as "street", "city", and "zip".

Use the Fake data API to get the JSON data

• https://fakestoreapi.com/

• fakeStoreApi can be used with any type of shopping project
that needs products, carts, and users in JSON format. you
can use examples below to check how fakeStoreApi works
and feel free to enjoy it in your awesome projects!

17

https://fakestoreapi.com/

Add the Dependencies for JSON & Network Calls

• Retrofit
• Retrofit is a popular HTTP client library for Android (and also Java

and Kotlin) that simplifies the process of making network requests
to web services. It's developed by Square and is widely used in the
Android development community.

18https://square.github.io/retrofit/

dependencies {

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")

 implementation("com.squareup.retrofit2:retrofit:2.11.0")

 implementation("com.squareup.retrofit2:converter-gson:2.11.0")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

https://square.github.io/retrofit/

Add the Dependencies for image loading

• Coil is an image loading library for Android and Compose
Multiplatform.

19

dependencies {

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")

 implementation("com.squareup.retrofit2:retrofit:2.11.0")

 implementation("com.squareup.retrofit2:converter-gson:2.11.0")

 implementation("io.coil-kt.coil3:coil-compose:3.1.0")

 implementation("io.coil-kt.coil3:coil-network-okhttp:3.1.0")

 implementation(libs.androidx.core.ktx)

https://coil-kt.github.io/coil/

https://coil-kt.github.io/coil/

data class Product(

 val id: Int,

 val title: String,

 val price: Double,

 val description: String,

 val image: String

)

Create the Model for Product

20

https://fakestoreapi.com/products

https://fakestoreapi.com/products

Add the Internet Permission

• Open the AndroidManifest.xml file from manifests folder,
and add the <user-permission> for network access

21

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

Allows your app to open network
sockets and connect to the internet.

Lets your app
check the
network's state
and connectivity
status.

Write an Interface for access the Internet resource

• Create a new Kotlin file, named ApiService.kt

22

private val retrofit = Retrofit.Builder().baseUrl("https://fakestoreapi.com/")

 .addConverterFactory(GsonConverterFactory.create())

 .build()

val shoppingService = retrofit.create(ApiService::class.java)

interface ApiService{

 @GET("products")

 suspend fun getProducts():List<Product>

}

Defining the API Service interface

Declaring the method as suspend means it can be
called within a Kotlin coroutine, allowing for
asynchronous execution without blocking the main
thread.

Creates a builder instance to configure Retrofit.

Adds a converter factory for
serializing and deserializing JSON
data. Gson converts JSON
responses into Kotlin/Java objects.

This tells Retrofit to generate an
implementation of the ApiService
interface. we can use to call the
API endpoints.

Create the MainViewModel
• Create a new Kotlin class, named MainViewModel.kt

23

data class ProductState(

 val loading:Boolean = true,

 val list: List<Product> = emptyList(),

 val error: String? = null

)

Step1. prepare a data class
to store the data from API

private val _productsState =

mutableStateOf(ProductState())

val productState: State<ProductState>

= _productsState

Step2. prepare _productsState to hold
the mutable state of ProductState(),
and the public read-only productsState
expose the state to UI.

private fun fetchProducts(){

 viewModelScope.launch {

 try{

 val response = shoppingService.getProducts()

 _productsState.value = _productsState.value.copy(

 list = response,

 loading = false,

 error = null

)

 }catch (e:Exception){

 _productsState.value = _productsState.value.copy(

 loading = false,

 error = "Error fetching Products ${e.message}"

Step3. write a fetchProducts method to access to API
resource and store the response to _productsState

init {

 fetchProducts()

}

Step4. execute the fetchProducts() to fetch the data

Create a view to show the products

24

• Create a new Kotlin file, named ShoppingtScreen.kt

@Composable

fun ShoppingScreen(modifier: Modifier = Modifier){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

 Box(modifier = modifier.fillMaxSize()){

 when{

 viewstate.loading -> {

 CircularProgressIndicator(modifier.align(Alignment.Center))

 }

 viewstate.error != null ->{

 Text("Error occurred")

 }

 else ->{

// show the products at here

 }

Create a view for each product item in shopping view

25

@Composable

fun ProductItem(product: Product){

 Column(modifier = Modifier.padding(8.dp).fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally)

 {

 Image(

 painter = rememberAsyncImagePainter(product.image),

 contentDescription = "the picture of our products",

 modifier = Modifier.fillMaxSize().aspectRatio(1f)

)

 Text(

 text = product.title,

 color = Color.Black,

 style = TextStyle(fontWeight = FontWeight.Bold),

 modifier = Modifier.padding(top=4.dp)

)

 }

}

The image
of product

The title of
product

Create a view of products contain all the product items

26

@Composable

fun ProductScreen(products: List<Product>){

 LazyVerticalGrid(GridCells.Fixed(2), modifier = Modifier.fillMaxSize()) {

 items(products){

 product ->

 ProductItem(product = product)

 }

 }

}

A layout that efficiently displays
a grid of items, only composing
and laying out visible items,
which is ideal for long lists or
grids.

Configures the grid
to have a fixed
number of columns

Iterates over the products list. For each Product in the list,
the lambda function is executed.

For every product in the list, a ProductItem composable
is called. This composable is responsible for rendering
the individual product's UI

Each element in the list is referred to as product.

Add the ProductScreen view to ShoppingScreen view

27

fun ShoppingScreen(modifier: Modifier = Modifier){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

 Box(modifier = modifier.fillMaxSize()){

 when{

 viewstate.loading -> {

 CircularProgressIndicator(modifier.align(Alignment.Center))

 }

 viewstate.error != null ->{

 Text(viewstate.error.toString())

 }

 else ->{

 ProductScreen(products = viewstate.list)

 }

 }

Invoke the ProductScreen
composable passing the list of
producs from the state to
display them.

Add the ShoppingScreen view to MainActivity

28

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 ShoppingAppTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 ShoppingScreen(

 modifier = Modifier.padding(innerPadding)

)

 }

 }

	スライド 1: Mobile Application Development
	スライド 2: MVVM Architecture
	スライド 3: Model
	スライド 4: ViewModel
	スライド 5: View
	スライド 6: Demo Counter App
	スライド 7: The Counter App without Model
	スライド 8: Convert the App by MVVM
	スライド 9: Add the Dependency
	スライド 10: Create a View Model
	スライド 11: Use the ViewModel at the View
	スライド 12: Add the Model for CounterApp
	スライド 13: Modify the ViewModel
	スライド 14: Shopping App
	スライド 15: What is JSON
	スライド 16: Understand the Structure of JSON
	スライド 17: Use the Fake data API to get the JSON data
	スライド 18: Add the Dependencies for JSON & Network Calls
	スライド 19: Add the Dependencies for image loading
	スライド 20: Create the Model for Product
	スライド 21: Add the Internet Permission
	スライド 22: Write an Interface for access the Internet resource
	スライド 23: Create the MainViewModel
	スライド 24: Create a view to show the products
	スライド 25: Create a view for each product item in shopping view
	スライド 26: Create a view of products contain all the product items
	スライド 27: Add the ProductScreen view to ShoppingScreen view
	スライド 28: Add the ShoppingScreen view to MainActivity

