Mobile Application Development | week7

\Vobile Application
Development

Week7 App Navigation

Yi SUN
Kobe Institute of Computing

What is Navigation

« Navigation refers to the interactions that let users navigate
across, into, and back out from the different pieces of

content within your app.

 Android Jetpack's Navigation component includes the
Navigation library, Safe Args Gradle plug-in, and tooling to
help you implement app navigation. The Navigation
component handles diverse navigation use cases, from
straightforward button clicks to more complex patterns, such

as app bars and the navigation drawer.

https://developer.android.com/guide/navigation

https://developer.android.com/guide/navigation

Key concepts

Concept

Host

Graph

Controller

Destination

Route

Purpose

A Ul element that contains the current navigation destination.
That is, when a user navigates through an app, the app
essentially swaps destinations in and out of the navigation
host.

A data structure that defines all the navigation destinations
within the app and how they connect together.

The central coordinator for managing navigation between
destinations. The controller offers methods for navigating
between destinations, handling deep links, managing the back
stack, and more.

A node in the navigation graph. When the user navigates to
this node, the host displays its content.

Uniquely identifies a destination and any data required by it.

You can navigate using routes. Routes take you to
destinations.

Type
*Compose: NavHost

*Fragments: NavHostFragment

NavGraph

NavController

NavDestination

Typically created when constructing the navigation
graph.

Any serializable data type.

https://developer.android.com/reference/kotlin/androidx/navigation/compose/package-summary#NavHost(androidx.navigation.NavHostController,androidx.navigation.NavGraph,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,kotlin.Function1,kotlin.Function1,kotlin.Function1,kotlin.Function1,kotlin.Function1)
https://developer.android.com/reference/androidx/navigation/fragment/NavHostFragment
https://developer.android.com/reference/androidx/navigation/NavGraph
https://developer.android.com/reference/androidx/navigation/NavController
https://developer.android.com/reference/androidx/navigation/NavDestination

SBenefits and features

Animations and transitions: Provides standardized resources for animations and
transitions.

Deep linking: Implements and handles deep links that take the user directly to a
destination.

Ul patterns: Supports patterns such as navigation drawers and bottom navigation
with minimal additional work.

Type safety: Includes support for passing data between destinations with type safety.

ViewModel support: Enables scoping a ViewModel to a navigation graph to share Ul-
related data between the graph's destinations.

Fragment transactions: Fully supports and handles fragment transactions.
Back and up: Handles back and up actions correctly by default.

Understand Navigation by simple sample

« We are building a simple greeting app.

Open AndroidStudio
Select File > New > NewProject

Choose Empty Activity
Name: NavigationSample

W=

Prepare the First Screen

e New Kotlin file FirstScreen.kt

FirstScreen.kt

@Composable
fun FirstScreen(modifier: Modifier){
val name = remember { mutableStateOf("") }
Column(modifier = Modifier.fillMaxSize().padding(16.dp),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally){
Text("The First Screen”, fontSize = 24.sp)
Spacer(modifier = Modifier.height(16.dp))
OutlinedTextField(value = name.value, onValueChange = {
name.value = it
)
Button(onClick = {}) {
Text("To Second Screen")

}
}

}

MainActivity.kt

NavigationSampleTheme {

S

affold(modifier = Modifier.fillMaxSize()) { innerPadding ->

FirstScreen(
modifier = Modifier.padding(innerPadding)

)

The First Screen

Prepare the Second Screen

e New Kotlin file SecondScreen.kt

SecondScreen. kt

@Composable
fun SecondScreen(modifier: Modifier){

Column(modifier = Maodifier.fillMaxSize().padding(16.dp),
verticalArrangement = Arrangement.Center,
norizontalAlignment = Alignment.CenterHorizontally){
Text("The Second Screen”, fontSize = 24.sp)
Text("Welcome to Second Screen”, fontSize = 24.sp)
Button(onClick = {}) {

Text("To First Screen")

}
}

}

Add the navigation dependencies

 Make sure you've added the correct dependency in your
build.gradle (app-level) file:

v (&7 Gradle Scripts
&3 build.gradlekts (Project: tteess)

E’E; build.gradle.kts (Module :app)

— dependencies {
= proguard-rules.pro (ProGuard Rules for ":app”) val nav_version = "2.8.8"

£33 gradle.properties (Project Properties)

implementation("androidx.navigation:navigation-compose:$nav_version")
» Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

£} gradle-wrapper.properties (Gradle Version)

libs.versions.toml (Version Catalog)

€3 local properties (SDK Location) « Sync the Project:After making these changes, sync your

£3 settings.gradle kts (Project Settings) project in Android Studio to download the dependency.
« Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >

Invalidate Caches / Restart... in Android Studio.
8

Add the navigation function to the Screen

FirstScreen.kt

@Composable
fun FirstScreen(modifier: Modifier,|navigationToSecondScreen:()->Unit}{
val name = remember { mutableStateOf("") }
Column(modifier = Modifier.fillMaxSize().padding(16.dp),

Button(onClick = {
navigationToSecondScreen()

DA

Text("To Second Screen")

}

SecondScreen.kt

} @Composable

} fun SecondScreen(modifier: Modifier, havigateToFirstScreen:()->Unit)

[oumn |

Text("Welcome to Second Screen", fontSize = 24.sp)
Button(onClick = {
navigateToFirstScreen()

R
Text("To First Screen™)
}

}

}

Prepare the NavHost & NavController

Initializes a navigation controller Create a navHost and use the
with rememberNavController() navController to manage navigation
between composable screens.
MainActivity.kt /
fun Navitest(){ /
\l'al navController = rememberNavController() /

NavHost(navController = navController, startDestination = "first_screen")|{
composable(Tirst_screen’)q
composable('second_screen"){}

}

}

|
Define two routes

10

Define the navigations for each screen

Add modifier parameter, and remove the modifier
MainActivity.kt parameter in FirstScreen() and SecondScreen()

@Composable “ Passed a lambda

fun Navitest{modifier: Modifier){ junctionasan
val navController = rememberNavController() arg_ument. 'S lambaa
S e , defines what should
NavHost(navController = navController, startDestination = "first_screen”){ | - happen when a user
corn_posable("ﬁrst screen"){ triggers an event (like a
FirstScreen {

| button click) inside
navController.navigate("second screen") FirstScreen

}

; MainActivity.kt

composable("second_screen"){ ainActivity.
SecondScreen { _ _ NavigationSampleTheme {

navController.navigate("first_screen") Scaffold(modifier = Modifier.fillMaxSize()) {

} innerPadding ->

} Navitest(

) modifier = Modifier.padding(innerPadding)
)
} }
} 11

NModity the Tunction parameters to tranfer the
data by Navigation (1/3)

This is a lambda function

FirstScreen.kt :
~_ that takes a String as

@Composable input and returns Unit (i.e.,
fun FirstScreen(navigationToSecondScreen:(String)->Unit){ no return value). This
val name = remember { mutableStateOf("") } lambda is used to handle
Column(modifier = Modifier.fillMaxSize().padding(16.dp), navigation to the second
verticalArrangement = Arrangement.Center, screen, passing the
horizontalAlignment = Alignment.CenterHorizontally){ entered text along.

Text("The First Screen", fontSize = 24.sp)

Spacer(modifier = Maodifier.height(16.dp))

OutlinedTextField(value = name.value, onValueChange = {
name.value =it

1 When the button is clicked,
Button(onClick = { it triggers the
navigationToSecondScreen(name.value) navigationToSecondScree
N { \\ n lambda, passing the
Text("To Second Screen") current value of
} name.value. This is how
} the user's input is sent to

} the next screen. >

Modity the Tunction parameters to tranfer the
data by Navigation (2/3)

This parameter receives a
string, the user's input from
the first screen

SecondScreen.kt

@Composable / A lambda function that, when
fun SecondScreen(hame:String navigateToFirstScreen:()->Unitt){ invoked, will navigate the user
back to the first screen.

Column(modifier = Modifier.fillMaxSize().padding(16.dp),
verticalArrangement = Arrangement.Center, Use string interpolation to display
horizontal Alignment = Alignment.CenterHorizontally) a personalized welcome message

{ — that includes the value of name.
Text("The Second ScreW

Text("Welcome|[$name|to Second Screen”, fontSize = 24.sp)
Button(onClick =1

navigate ToFirstScreen() calls the navigateToFirstScreen
N { \ lambda, which is intended to
Text("To First Screen") handle the navigation back to
} the first screen.

}
} 13

NModi
data by Navigation (3/3)

MainActivity.kt

v the function parameters to tranfer the

FirstScreen Composable:
The function FirstScreen is
invoked here. It is passed a

@Composable
fun Navitest(modifier: Modifier){
val navController = rememberNavController()
NavHost(navController = navController, s
composable("first screen"){
FirstScreen {name->
navController.navigate("second_screen/$name")
}
}

composable(|'second_screen/{name}f———

val name = it.arguments?.getString("name") ?: "no name"
SecondScreen{name] {
navController.navigate("first_screen")
}
}

estination = "first_screen"){

o

the navigation argument
"name" is retrieved. If it's
not found, it defaults to
"no name".

}

lambda that takes a name
parameter.

This navigates to the
route

_ "second_screen/{name}",
replacing {name} with the
actual value provided

The route is defined with a
~ placeholder {name}, indicating
that a string value is expected
as part of the route.

}

14

Add the details Screen for the Shopping App

Open the Shoppingapp Project

Add the navigation dependencies

Prepare the Ul for Navigation

set up the Routes

Implement the Navigation and pass the data
Serialization and Deserialization with Parceable

O O A W=

Add the navigation dependencies

 Make sure you've added the correct dependency in your
build.gradle (app-level) file:

v (&7 Gradle Scripts
&3 build.gradlekts (Project: tteess)

E’E; build.gradle.kts (Module :app)

— dependencies {
= proguard-rules.pro (ProGuard Rules for ":app”) val nav_version = "2.8.8"

£33 gradle.properties (Project Properties)

implementation("androidx.navigation:navigation-compose:$nav_version")
» Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

£} gradle-wrapper.properties (Gradle Version)

libs.versions.toml (Version Catalog)

€3 local properties (SDK Location) « Sync the Project:After making these changes, sync your

£3 settings.gradle kts (Project Settings) project in Android Studio to download the dependency.
« Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >

Invalidate Caches / Restart... in Android Studio.
16

Setup the product item can be clickable (1/2)

ShoppingScreen.kt

@Composable

A
Column(modifier = Modifier.padding(8.dp)

fillMaxSize()
.clickable { navigationToDetail(product) |},
horizontalAlignment = Alignment.CenterHorizontally)

{

Image(
painter = rememberAsyncimagePainter(product.image),
contentDescription = "the picture of our products”,
modifier = Modifier.fillMaxSize().aspectRatio(1f)

)

Text(

fun Productltem(product: Product,
|navigationToDetaiI: (Product) -> Unit —

Add a lambda function that
accepts a Product object.
"~ This function is called when
the product item is clicked,

Wraps the entire column in a
clickable area. When the
column is clicked, it triggers the
provided navigation lambda,
passing the current product.

17

Setup the product item can be clickable (2/2)

ShoppingScreen.kt

fun ProductScreen(products: List<Product>,

items(products){
product ->

navigationToDetail: (Product) -> Unit)w[\(wr

LazyVerticalGrid(GridCells.Fixed(2), modifier = Modifier.fillMaxSize

Productltem(product = product, [navigationToDetail]

ShoppingScreen. kt

N

navigationToDetalil: (Product) -> Unit]

else ->{
ProductScreen(products = viewstate.list,

}
}
}

}

fun ShoppingScreen(modifier: Modifier = Modifierr/

val productViewModel: MainViewModel = viewModel()

navigationToDetaiIb‘/

Add the lambda function
that takes a Product and
handles navigation to a
detailed view of that
product.

Passed down to handle
clicks on a product item,
which will navigate to
its detailed view.

18

Set up the Routes with a Sealed Class

Add a sealed class to define the route for navigation

Screen. kt

sealed class Screen(val route:String) {
object ShoppingScreen:Screen("main_screen")
object ItemDetailScreen:Screen("detail _screen")

}

By haming the screens (ShoppingScreen and ItemDetailScreen)
and associating them with specific route strings, it becomes
clear what each screen represents and how they are navigated

to within the app.

Prepare the item detail screen

ProductDetailScreen.kt

@Composable
fun ProductDetailScreen(product: Product){
Column(modifier = Modifier.fillMaxSize()

.padding(16.dp),
horizontalAlignment = Alignment.CenterHorizontally
)1
Text(text = product.title, textAlign= TextAlign.Center)
Image(

painter = rememberAsynclmagePainter(product.image),
contentDescription = "${product.title} image",
modifier = Modifier.wrapContentSize().aspectRatio(1f)
)
Text(text= product.description,
textAlign = TextAlign.Justify,
modifier = Modifier.verticalScroll(rememberScrollState()))

44090 © ¢ @& 3G4N
Mens Casual Premium Slim Fit T-Shirts

Slim-fitting style, contrast raglan long sleeve,
three-button henley placket, light weight & soft
fabric for breathable and comfortable wearing.
And Solid stitched shirts with round neck made
for durability and a great fit for casual fashion
wear and diehard baseball fans. The Henley style
round neckline includes a three-button placket.

20

implement the navigation and pass the data

ShoppingScreen.kt

ShoppingApp.kt

@Composable

fun_ShoppingApp(navController: NavHostController, modifier: Modifier){
val productViewModel: MainViewModel = viewModel()

fun ShoppingScreen(modifier: Modifier = Modifier,
Viewstate:MainViewModel,ProductState, |
navigationToDetial: (ProduE:) -> Unit){

al productViewModel: MainViewModel = viewModel()
val viewstate by productViewModel.productState

val viewstate by productViewModel.productState

NavHost(navController = navController, startDestin
composable(route=Screen.ShoppingScree

ShoppingScreer‘(wewstate = wewstatel navigationToDetail = {
navController.curreniBackStackEntry?.savedStateHandle?.set("i
navController.navigate((Screen.ltemDetailScreen.route))

1)

}

composable(route = Screen.ltemDetailScreen.route) {

val product = navController.previousBackStackEntry?.savedStateHandle?.

ProductDetailScreen(product=product)

}
}
}

\

ion = Screen.ShoppingScreen.route){ Add the viewstate

parameter to
ShoppingScreen()

The code observes the
productState from the
view model using the by
delegate. The state (stored
in viewstate) likely
contains information such
as a list of products,
loading status, and error
information.

21

Continue to explain the navigation

This is the container that manages the navigation
graph. It uses the provided navController and sets

ShoppingApp.kt the-start-destination-to-the route defined by
@Composable Screen.ShoppingScreen!route.
fun ShoppingApp(navController: NavHostController, modifier: Modifier){

val productViewModel: MainViewModel = viewModel() Inside the lambda, the

val viewstate by productViewModel.productState selected product is stored

in the current back stack
entry’s savedStateHandle

NavHost(navController = navController, startDestination = Screen.ShoppingScreen.route){
composable(route=Screen.ShoppingScreen.route){

ShoppingScreen(viewstate = viewstate, navigationToDetail = { / with the key "item".Then,
navController.currentBackStackEntry?.savedStateHandle?.set("item", it) the app navigates to the
navController.navigate((Screen.ltemDetailScreen.route)) ltemDetailScreen by

}) calling

} | navController.navigate(Sc
composable(route = Screen.ItengtaHScreen.route) { reen.ltemDetailScreen.rou
val product = navController.previousBackStackEntry?.savedStateHandle? te)

get<Product>("item") ?: Product(0,™,0.0,™,"") '

ProductDetailScreen(product=product) The getail screen retrieves the product|data from the

%he retrieved product is then savedStateHandle of the previous back| stack entry
} passed to the ProductDetailScreen using the key "item".If no product is found (for example,
composable, which displays.its if something went wrong), a default Product is created 29

details. as a fallback.

Add the navigation to MainActivity.kt

Initializes and remembers a navigation

class MainActivity : ComponentActivity() { controller, which manages the app's
_ navigation state and back stack. It is
override fun onCreate(savedinstanceState: Bundle?) { Iatergpassed to the ShoppingApp
super.onCreate(savedlnstanceState) composable to enable navigation
enableEdge ToEdge() between screens.
setContent {

|Tal navController = rememberNavController()
ShoppingAppTheme {
Scaffold(modifier =Modifier.fillMaxSize()) { innerPadding ->
ShoppingApp(navController,
modifier = Modifier.padding(innerPadding)

23

Serialization and Deserialization with Parcelable

_ Implementing Parcelable allows instances
« Add the plugins for Parcelabe of the Product class to be serialized.

@Parcelize Annotation:This is

build.gradle @Parcelize a Kotlin-specific annotation
plug!ns {_ | | o data class Product(that automatlcally generates
alias(libs.plugins.android.application) val id: Int the necessary boilerplate code

for the Parcelable interface.
By using @Parcelize, you don’t
have to manually implement
methods like writeToParcel()
and describeContents().

alias(libs.plugins.kotlin.android)
alias(libs.plugins.kotlin.compose)
Id("kotlin-parcelize")

val title: String,

val price: Double,

val description: String,
} val image: String
:Parcelable

Ner’

Parcelable Interface:Implementing Parcelable

allows instances of the Product class to be

serialized. This is particularly useful in Android for
passing objects between activities or fragments via
Intent extras or Bundles. 24

	スライド 1: Mobile Application Development
	スライド 2: What is Navigation
	スライド 3: Key concepts
	スライド 4: Benefits and features
	スライド 5: Understand Navigation by simple sample
	スライド 6: Prepare the First Screen
	スライド 7: Prepare the Second Screen
	スライド 8: Add the navigation dependencies
	スライド 9: Add the navigation function to the Screen
	スライド 10: Prepare the NavHost & NavController
	スライド 11: Define the navigations for each screen
	スライド 12: Modify the function parameters to tranfer the data by Navigation (1/3)
	スライド 13: Modify the function parameters to tranfer the data by Navigation (2/3)
	スライド 14: Modify the function parameters to tranfer the data by Navigation (3/3)
	スライド 15: Add the details Screen for the Shopping App
	スライド 16: Add the navigation dependencies
	スライド 17: Setup the product item can be clickable (1/2)
	スライド 18: Setup the product item can be clickable (2/2)
	スライド 19: Set up the Routes with a Sealed Class
	スライド 20: Prepare the item detail screen
	スライド 21: Implement the navigation and pass the data
	スライド 22: Continue to explain the navigation
	スライド 23: Add the navigation to MainActivity.kt
	スライド 24: Serialization and Deserialization with Parcelable

