
Mobile Application
Development

Week7 App Navigation

Mobile Application Development | week7

1

What is Navigation

• Navigation refers to the interactions that let users navigate
across, into, and back out from the different pieces of
content within your app.

• Android Jetpack's Navigation component includes the
Navigation library, Safe Args Gradle plug-in, and tooling to
help you implement app navigation. The Navigation
component handles diverse navigation use cases, from
straightforward button clicks to more complex patterns, such
as app bars and the navigation drawer.

2

https://developer.android.com/guide/navigation

https://developer.android.com/guide/navigation

Key concepts

3

Concept Purpose Type

Host A UI element that contains the current navigation destination.
That is, when a user navigates through an app, the app
essentially swaps destinations in and out of the navigation
host.

•Compose: NavHost

•Fragments: NavHostFragment

Graph A data structure that defines all the navigation destinations
within the app and how they connect together.

NavGraph

Controller The central coordinator for managing navigation between
destinations. The controller offers methods for navigating
between destinations, handling deep links, managing the back
stack, and more.

NavController

Destination A node in the navigation graph. When the user navigates to
this node, the host displays its content.

NavDestination

Typically created when constructing the navigation
graph.

Route Uniquely identifies a destination and any data required by it.

You can navigate using routes. Routes take you to
destinations.

Any serializable data type.

https://developer.android.com/reference/kotlin/androidx/navigation/compose/package-summary#NavHost(androidx.navigation.NavHostController,androidx.navigation.NavGraph,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,kotlin.Function1,kotlin.Function1,kotlin.Function1,kotlin.Function1,kotlin.Function1)
https://developer.android.com/reference/androidx/navigation/fragment/NavHostFragment
https://developer.android.com/reference/androidx/navigation/NavGraph
https://developer.android.com/reference/androidx/navigation/NavController
https://developer.android.com/reference/androidx/navigation/NavDestination

Benefits and features

• Animations and transitions: Provides standardized resources for animations and
transitions.

• Deep linking: Implements and handles deep links that take the user directly to a
destination.

• UI patterns: Supports patterns such as navigation drawers and bottom navigation
with minimal additional work.

• Type safety: Includes support for passing data between destinations with type safety.

• ViewModel support: Enables scoping a ViewModel to a navigation graph to share UI-
related data between the graph's destinations.

• Fragment transactions: Fully supports and handles fragment transactions.

• Back and up: Handles back and up actions correctly by default.

4

Understand Navigation by simple sample

• We are building a simple greeting app.

5

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: NavigationSample

Prepare the First Screen

• New Kotlin file FirstScreen.kt

6

NavigationSampleTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 FirstScreen(

 modifier = Modifier.padding(innerPadding)

)

 }

}
@Composable

fun FirstScreen(modifier: Modifier){

 val name = remember { mutableStateOf("") }

 Column(modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally){

 Text("The First Screen", fontSize = 24.sp)

 Spacer(modifier = Modifier.height(16.dp))

 OutlinedTextField(value = name.value, onValueChange = {

 name.value = it

 })

 Button(onClick = {}) {

 Text("To Second Screen")

 }

 }

}

FirstScreen.kt

MainActivity.kt

Prepare the Second Screen

• New Kotlin file SecondScreen.kt

7

SecondScreen.kt

@Composable

fun SecondScreen(modifier: Modifier){

 Column(modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally){

 Text("The Second Screen", fontSize = 24.sp)

 Text("Welcome to Second Screen", fontSize = 24.sp)

 Button(onClick = {}) {

 Text("To First Screen")

 }

 }

}

dependencies {

 val nav_version = "2.8.8"

 implementation("androidx.navigation:navigation-compose:$nav_version")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

Add the navigation dependencies
• Make sure you’ve added the correct dependency in your

build.gradle (app-level) file:

8

• Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

• Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

Add the navigation function to the Screen

9

@Composable

fun FirstScreen(modifier: Modifier, navigationToSecondScreen:()->Unit){

 val name = remember { mutableStateOf("") }

 Column(modifier = Modifier.fillMaxSize().padding(16.dp),

….

 Button(onClick = {

 navigationToSecondScreen()

 }) {

 Text("To Second Screen")

 }

 }

}

@Composable

fun SecondScreen(modifier: Modifier, navigateToFirstScreen:()->Unit){

 …

 Text("Welcome to Second Screen", fontSize = 24.sp)

 Button(onClick = {

 navigateToFirstScreen()

 }) {

 Text("To First Screen")

 }

 }

}

FirstScreen.kt

SecondScreen.kt

Prepare the NavHost & NavController

10

fun Navitest(){

 val navController = rememberNavController()

 NavHost(navController = navController, startDestination = "first_screen"){

 composable("first_screen"){}

 composable("second_screen"){}

 }

}

Initializes a navigation controller
with rememberNavController()

Create a navHost and use the
navController to manage navigation
between composable screens.

Define two routes

MainActivity.kt

@Composable

fun Navitest(modifier: Modifier){

 val navController = rememberNavController()

 NavHost(navController = navController, startDestination = "first_screen"){

 composable("first_screen"){

 FirstScreen {

 navController.navigate("second_screen")

 }

 }

 composable("second_screen"){

 SecondScreen {

 navController.navigate("first_screen")

 }

 }

 }

}

NavigationSampleTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) {

innerPadding ->

 Navitest(

 modifier = Modifier.padding(innerPadding)

)

 }

}

Define the navigations for each screen

11

Passed a lambda
function as an
argument. This lambda
defines what should
happen when a user
triggers an event (like a
button click) inside
FirstScreen

Add modifier parameter, and remove the modifier
parameter in FirstScreen() and SecondScreen()MainActivity.kt

MainActivity.kt

Modify the function parameters to tranfer the
data by Navigation (1/3)

12

@Composable

fun FirstScreen(navigationToSecondScreen:(String)->Unit){

 val name = remember { mutableStateOf("") }

 Column(modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally){

 Text("The First Screen", fontSize = 24.sp)

 Spacer(modifier = Modifier.height(16.dp))

 OutlinedTextField(value = name.value, onValueChange = {

 name.value = it

 })

 Button(onClick = {

 navigationToSecondScreen(name.value)

 }) {

 Text("To Second Screen")

 }

 }

}

FirstScreen.kt
This is a lambda function
that takes a String as
input and returns Unit (i.e.,
no return value). This
lambda is used to handle
navigation to the second
screen, passing the
entered text along.

When the button is clicked,
it triggers the
navigationToSecondScree
n lambda, passing the
current value of
name.value. This is how
the user's input is sent to
the next screen.

Modify the function parameters to tranfer the
data by Navigation (2/3)

13

@Composable

fun SecondScreen(name:String, navigateToFirstScreen:()->Unit){

 Column(modifier = Modifier.fillMaxSize().padding(16.dp),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally)

 {

 Text("The Second Screen", fontSize = 24.sp)

 Text("Welcome $name to Second Screen", fontSize = 24.sp)

 Button(onClick = {

 navigateToFirstScreen()

 }) {

 Text("To First Screen")

 }

 }

}

SecondScreen.kt

This parameter receives a
string, the user's input from
the first screen

A lambda function that, when
invoked, will navigate the user
back to the first screen.

Use string interpolation to display
a personalized welcome message
that includes the value of name.

calls the navigateToFirstScreen
lambda, which is intended to
handle the navigation back to
the first screen.

Modify the function parameters to tranfer the
data by Navigation (3/3)

14

@Composable

fun Navitest(modifier: Modifier){

 val navController = rememberNavController()

 NavHost(navController = navController, startDestination = "first_screen"){

 composable("first_screen"){

 FirstScreen {name->

 navController.navigate("second_screen/$name")

 }

 }

 composable("second_screen/{name}"){

 val name = it.arguments?.getString("name") ?: "no name"

 SecondScreen(name) {

 navController.navigate("first_screen")

 }

 }

 }

}

FirstScreen Composable:
The function FirstScreen is
invoked here. It is passed a
lambda that takes a name
parameter.

MainActivity.kt

This navigates to the
route
"second_screen/{name}",
replacing {name} with the
actual value provided

The route is defined with a
placeholder {name}, indicating
that a string value is expected
as part of the route.

the navigation argument
"name" is retrieved. If it’s
not found, it defaults to
"no name".

Add the details Screen for the Shopping App

1. Open the Shoppingapp Project

2. Add the navigation dependencies

3. Prepare the UI for Navigation

4. set up the Routes

5. Implement the Navigation and pass the data

6. Serialization and Deserialization with Parceable

15

dependencies {

 val nav_version = "2.8.8"

 implementation("androidx.navigation:navigation-compose:$nav_version")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

Add the navigation dependencies
• Make sure you’ve added the correct dependency in your

build.gradle (app-level) file:

16

• Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

• Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

Setup the product item can be clickable (1/2)

17

@Composable

fun ProductItem(product: Product,

 navigationToDetail: (Product) -> Unit

){

 Column(modifier = Modifier.padding(8.dp)

 .fillMaxSize()

 .clickable { navigationToDetail(product) },

 horizontalAlignment = Alignment.CenterHorizontally)

 {

 Image(

 painter = rememberAsyncImagePainter(product.image),

 contentDescription = "the picture of our products",

 modifier = Modifier.fillMaxSize().aspectRatio(1f)

)

 Text(

Add a lambda function that
accepts a Product object.
This function is called when
the product item is clicked,

Wraps the entire column in a
clickable area. When the
column is clicked, it triggers the
provided navigation lambda,
passing the current product.

ShoppingScreen.kt

18

fun ProductScreen(products: List<Product>,

 navigationToDetail: (Product) -> Unit){

 LazyVerticalGrid(GridCells.Fixed(2), modifier = Modifier.fillMaxSize()) {

 items(products){

 product ->

 ProductItem(product = product, navigationToDetail)

…

Setup the product item can be clickable (2/2)

fun ShoppingScreen(modifier: Modifier = Modifier,

 navigationToDetail: (Product) -> Unit){

 val productViewModel: MainViewModel = viewModel()

 …

 else ->{

 ProductScreen(products = viewstate.list,navigationToDetail)

 }

 }

 }

}

Add the lambda function
that takes a Product and
handles navigation to a
detailed view of that
product.

Passed down to handle
clicks on a product item,
which will navigate to
its detailed view.

ShoppingScreen.kt

ShoppingScreen.kt

Set up the Routes with a Sealed Class

19

sealed class Screen(val route:String) {

 object ShoppingScreen:Screen("main_screen")

 object ItemDetailScreen:Screen("detail_screen")

}

Screen.kt

Add a sealed class to define the route for navigation

By naming the screens (ShoppingScreen and ItemDetailScreen)
and associating them with specific route strings, it becomes
clear what each screen represents and how they are navigated
to within the app.

Prepare the item detail screen

20

@Composable

fun ProductDetailScreen(product: Product){

 Column(modifier = Modifier.fillMaxSize()

 .padding(16.dp),

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text = product.title, textAlign= TextAlign.Center)

 Image(

 painter = rememberAsyncImagePainter(product.image),

 contentDescription = "${product.title} image",

 modifier = Modifier.wrapContentSize().aspectRatio(1f)

)

 Text(text= product.description,

 textAlign = TextAlign.Justify,

 modifier = Modifier.verticalScroll(rememberScrollState()))

 }

}

ProductDetailScreen.kt

@Composable

fun ShoppingApp(navController: NavHostController, modifier: Modifier){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

 NavHost(navController = navController, startDestination = Screen.ShoppingScreen.route){

 composable(route=Screen.ShoppingScreen.route){

 ShoppingScreen(viewstate = viewstate, navigationToDetail = {

 navController.currentBackStackEntry?.savedStateHandle?.set("item", it)

 navController.navigate((Screen.ItemDetailScreen.route))

 })

 }

 composable(route = Screen.ItemDetailScreen.route) {

 val product = navController.previousBackStackEntry?.savedStateHandle?.

 get<Product>("item") ?: Product(0,"",0.0,"","")

 ProductDetailScreen(product=product)

 }

 }

}

Implement the navigation and pass the data

21

fun ShoppingScreen(modifier: Modifier = Modifier,

 viewstate:MainViewModel.ProductState,

 navigationToDetial: (Product) -> Unit){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

ShoppingScreen.kt

ShoppingApp.kt

Add the viewstate
parameter to
ShoppingScreen()

The code observes the
productState from the
view model using the by
delegate. The state (stored
in viewstate) likely
contains information such
as a list of products,
loading status, and error
information.

Continue to explain the navigation

22

@Composable

fun ShoppingApp(navController: NavHostController, modifier: Modifier){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

 NavHost(navController = navController, startDestination = Screen.ShoppingScreen.route){

 composable(route=Screen.ShoppingScreen.route){

 ShoppingScreen(viewstate = viewstate, navigationToDetail = {

 navController.currentBackStackEntry?.savedStateHandle?.set("item", it)

 navController.navigate((Screen.ItemDetailScreen.route))

 })

 }

 composable(route = Screen.ItemDetailScreen.route) {

 val product = navController.previousBackStackEntry?.savedStateHandle?.

 get<Product>("item") ?: Product(0,"",0.0,"","")

 ProductDetailScreen(product=product)

 }

 }

}

This is the container that manages the navigation
graph. It uses the provided navController and sets
the start destination to the route defined by
Screen.ShoppingScreen.route.

Inside the lambda, the
selected product is stored
in the current back stack
entry’s savedStateHandle
with the key "item".Then,
the app navigates to the
ItemDetailScreen by
calling
navController.navigate(Sc
reen.ItemDetailScreen.rou
te).

The detail screen retrieves the product data from the
savedStateHandle of the previous back stack entry
using the key "item".If no product is found (for example,
if something went wrong), a default Product is created
as a fallback.

The retrieved product is then
passed to the ProductDetailScreen
composable, which displays its
details.

ShoppingApp.kt

Add the navigation to MainActivity.kt

23

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 val navController = rememberNavController()

 ShoppingAppTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 ShoppingApp(navController,

 modifier = Modifier.padding(innerPadding)

)

}

Initializes and remembers a navigation
controller, which manages the app's
navigation state and back stack. It is
later passed to the ShoppingApp
composable to enable navigation
between screens.

Serialization and Deserialization with Parcelable

• Add the plugins for Parcelabe

24

plugins {

 alias(libs.plugins.android.application)

 alias(libs.plugins.kotlin.android)

 alias(libs.plugins.kotlin.compose)

 id("kotlin-parcelize")

}

build.gradle
@Parcelize

data class Product(

 val id: Int,

 val title: String,

 val price: Double,

 val description: String,

 val image: String

):Parcelable

Implementing Parcelable allows instances
of the Product class to be serialized.

@Parcelize Annotation:This is
a Kotlin-specific annotation
that automatically generates
the necessary boilerplate code
for the Parcelable interface.
By using @Parcelize, you don’t
have to manually implement
methods like writeToParcel()
and describeContents().

Parcelable Interface:Implementing Parcelable
allows instances of the Product class to be
serialized. This is particularly useful in Android for
passing objects between activities or fragments via
Intent extras or Bundles.

	スライド 1: Mobile Application Development
	スライド 2: What is Navigation
	スライド 3: Key concepts
	スライド 4: Benefits and features
	スライド 5: Understand Navigation by simple sample
	スライド 6: Prepare the First Screen
	スライド 7: Prepare the Second Screen
	スライド 8: Add the navigation dependencies
	スライド 9: Add the navigation function to the Screen
	スライド 10: Prepare the NavHost & NavController
	スライド 11: Define the navigations for each screen
	スライド 12: Modify the function parameters to tranfer the data by Navigation (1/3)
	スライド 13: Modify the function parameters to tranfer the data by Navigation (2/3)
	スライド 14: Modify the function parameters to tranfer the data by Navigation (3/3)
	スライド 15: Add the details Screen for the Shopping App
	スライド 16: Add the navigation dependencies
	スライド 17: Setup the product item can be clickable (1/2)
	スライド 18: Setup the product item can be clickable (2/2)
	スライド 19: Set up the Routes with a Sealed Class
	スライド 20: Prepare the item detail screen
	スライド 21: Implement the navigation and pass the data
	スライド 22: Continue to explain the navigation
	スライド 23: Add the navigation to MainActivity.kt
	スライド 24: Serialization and Deserialization with Parcelable

