
Mobile Application
Development

Week8 Use Location data in Android

Mobile Application Development | week8

1

Understand Location Services by simple sample

• We are building a simple greeting app.

2

1. Open AndroidStudio

2. Select File > New > NewProject
3. Choose Empty Activity
4. Name: LocationSample

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

Add Permissons for Location Serves in AndroidManifest.xml

• Edit the AndroidManifest.xml file in app/manifests/ folder

3

AndroidManifest.xml

https://developer.android.com/reference/android/Manifest.permission

https://developer.android.com/reference/android/Manifest.permission

class LocationUtils(val context: Context) {

 fun hasLocationPermission(context: Context): Boolean{

 if (ContextCompat.checkSelfPermission(

 context,Manifest.permission.ACCESS_FINE_LOCATION) == PackageManager.PERMISSION_GRANTED

 &&

 ContextCompat.checkSelfPermission(

 context,Manifest.permission.ACCESS_COARSE_LOCATION) == PackageManager.PERMISSION_GRANTED

){

 return true

 }else{

 return false

 }

 }

}

Check we have the permissions to access the
location services

4

Create a New class file LocationUtils to check the App have the permissions to access the
location services. This code is a utility for managing runtime location permissions in an Android
app. By abstracting the permission check into a reusable method (hasLocationPermission),
developers can easily verify if the necessary location access has been granted before performing
location-dependent operations.

It takes a Context object, allowing it to interact
with Android’s permission system.

uses ContextCompat.checkSelfPermission() to check
each permission.

LocationUtils.kt

The UI of check the permission

5

@Composable

fun LocationDisplay(

 locationUtils: LocationUtils,

 context: Context

){

 val requestPermissionLauncher = rememberLauncherForActivityResult(

 contract = ActivityResultContracts.RequestMultiplePermissions(),

 onResult = { permissions ->

 if(permissions[Manifest.permission.ACCESS_COARSE_LOCATION] == true

 && permissions[Manifest.permission.ACCESS_FINE_LOCATION] == true){

 // I have access to location

 }else{

 // Ask for permission

 }

 }

)

 Column(modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center){

 Text(text =" Location not avalilabe")

 Button(onClick = {

 if(locationUtils.hasLocationPermission(context))

 {

 //Permission already granted update the location

 }else{

 //request location permission

 }

 }) {

 Text(text="Get Location")

 }

 }

The Android context used for permission
checks and UI operations such as showing
Toasts or launching permission requests.

This function creates a launcher that can
requesting permissions. It uses the
ActivityResultContracts.RequestMultiplePermis
sions() contract, which allows you to request
several permissions at once.

The callback receives a map
Keys: Permission names (e.g.,
Manifest.permission.ACCESS_FINE_LOCATION).V
alues: Booleans indicating whether each
permission was granted.

UI Layout

The code calls
locationUtils.hasLocationPermission(conte
xt) to determine if the required location
permissions are already granted.

MainActivity.kt

Permission Request Launcher

6

onResult = { permissions ->

 if(permissions[Manifest.permission.ACCESS_COARSE_LOCATION] == true

 && permissions[Manifest.permission.ACCESS_FINE_LOCATION] == true){

 // I have access to location

 }else{

 val rationaleRequired = ActivityCompat.shouldShowRequestPermissionRationale(

 context as MainActivity,

 Manifest.permission.ACCESS_FINE_LOCATION

) || ActivityCompat.shouldShowRequestPermissionRationale(

 context as MainActivity,

 Manifest.permission.ACCESS_COARSE_LOCATION

)

 if(rationaleRequired){

 Toast.makeText(context,

 "Location permission is required for this feature to work",

 Toast.LENGTH_LONG).show()

 }else{

 Toast.makeText(context,

 "Location permission is required.please enable it in the Android Settings",

 Toast.LENGTH_LONG).show()

 }

 }

Granted Case:
If both ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION are granted (true),
the code can proceed with location-related
functionality (placeholder comment indicates
where additional logic would go).

Denied Case & Rationale Check:
If one or both permissions are not granted, it
checks whether the app should display a
rationale using
ActivityCompat.shouldShowRequestPermissio
nRationale.

With Rationale:A Toast is shown explaining that
location permission is needed for the feature to
work.

Without Rationale:A different Toast informs the
user to enable the permission via Android
Settings.

MainActivity.kt

The Button Action

7

Column(modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center){

 Text(text =" Location not avalilabe")

 Button(onClick = {

 if(locationUtils.hasLocationPermission(context))

 {

 //Permission already granted update the location

 }else{

 requestPermissionLauncher.launch(

 arrayOf(

 Manifest.permission.ACCESS_FINE_LOCATION,

 Manifest.permission.ACCESS_COARSE_LOCATION

)

)

 }

 }) {

 Text(text="Get Location")

 }

If permissions are not granted, it triggers
the requestPermissionLauncher to
request both fine and coarse location
permissions.

MainActivity.kt

Load the app to the MainActivity

8

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 LocationSampleTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 LocationApp(

 modifier = Modifier.padding(innerPadding)

)

 }

 }

 }

 }

}

@Composable

fun LocationApp(modifier: Modifier){

 val context = LocalContext.current

 val locationUtils = LocationUtils(context)

 LocationDisplay(locationUtils=locationUtils, context = context)

}

MainActivity.kt

Add a Data class for location data

9

data class LocationData (

 val latitude: Double,

 val longitude: Double

)

Create a New data class file LocationData to store the location data include the latitude
data and longitude data.

LocationData.kt

Add the Dependency

• Make sure you’ve added the correct dependency in your
build.gradle (app-level) file:

10

• Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.

• Cache/Index Issues:If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

https://developers.google.com/android/guides/setup

dependencies {

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")

 implementation("com.google.android.gms:play-services-location:21.3.0")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

 implementation(libs.androidx.activity.compose)

https://developers.google.com/android/guides/setup

Add a ViewModel for Location data

11

class LocationViewModel: ViewModel() {

 private val _location = mutableStateOf<LocationData?>(null)

 val location: State<LocationData?> = _location

 fun updateLocation(newLocation: LocationData){

 _location.value = newLocation

 }

}

Create a New file LocationViewModel to present the location

LocationViewModel.kt

Add the viewModel to MainActiviity

12

enableEdgeToEdge()

 setContent {

 val viewModel: LocationViewModel = viewModel()

 LocationSampleTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 LocationApp(

 modifier = Modifier.padding(innerPadding),

 viewModel

)

……

}

@Composable

fun LocationApp(modifier: Modifier, viewModel: LocationViewModel){

 val context = LocalContext.current

 val locationUtils = LocationUtils(context)

 LocationDisplay(locationUtils=locationUtils,viewModel, context = context)

}

@Composable

fun LocationDisplay(

 locationUtils: LocationUtils,

 viewModel: LocationViewModel,

 context: Context

){

 val requestPermissionLauncher = rememberLauncherForActivityResult(

MainActivity.kt

Create an instance of the Fused Location Provider Client
to take the location data

13https://developer.android.com/develop/sensors-and-location/location/retrieve-current

class LocationUtils(val context: Context) {

 private val _fusedLocationClient: FusedLocationProviderClient = LocationServices.getFusedLocationProviderClient(context)

 @SuppressLint("MissingPermission")

 fun requestLocationUpdates(viewModel: LocationViewModel){

 val locationCallback = object: LocationCallback(){

 override fun onLocationResult(locationResult: LocationResult) {

 super.onLocationResult(locationResult)

 locationResult.lastLocation?.let {

 val location = LocationData(latitude = it.latitude, longitude = it.longitude)

 viewModel.updateLocation(location)

 }

 }

 }

 val locationRequest = LocationRequest.Builder(Priority.PRIORITY_HIGH_ACCURACY,1000).build()

 _fusedLocationClient.requestLocationUpdates(locationRequest,locationCallback, Looper.getMainLooper())

 }

This annotation tells the
compiler to ignore warnings
about missing location
permission checks.

Initializes a client to interact with Google’s
location services. The Fused Location
Provider API efficiently combines signals
from GPS, Wi-Fi, and cellular networks to
provide accurate location data.

Defines a callback that will be
triggered when new location data
is available.

Priority:Uses Priority.PRIORITY_HIGH_ACCURACY to request the most precise location available.
Interval:The second parameter, 1000, represents the desired interval in milliseconds (i.e., 1 second)
for location updates.

Initiates the request for location updates using the configured request and callback.
locationRequest: Specifies the configuration for the updates.
locationCallback: The callback that handles incoming location data.
Looper.getMainLooper(): Ensures that the callback is executed on the main thread, which is necessary for updating UI elements or interacting
with view models

LocationUtils.kt

https://developer.android.com/develop/sensors-and-location/location/retrieve-current

Request the location data to MainActivity and show it

14

fun LocationDisplay(

 locationUtils: LocationUtils,

 viewModel: LocationViewModel,

 context: Context

){

 val location = viewModel.location.value

 val requestPermissionLauncher = rememberLauncherForActivityResult(

 contract = ActivityResultContracts.RequestMultiplePermissions(),

 onResult = { permissions ->

 if(permissions[Manifest.permission.ACCESS_COARSE_LOCATION] == true

 && permissions[Manifest.permission.ACCESS_FINE_LOCATION] == true){

 locationUtils.requestLocationUpdates(viewModel=viewModel)

 }else{

 val rationaleRequired = ActivityCompat.shouldShowRequestPermissionRationale(

 context as MainActivity,

 Manifest.permission.ACCESS_FINE_LOCATION

) || ActivityCompat.shouldShowRequestPermissionRationale(

Column(modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center){

 if(location != null){

 Text("Address: ${location.latitude} ${location.longitude}")

 }else{

 Text(text =" Location not avalilabe")

 }

 Button(onClick = {

Retrieves the current
location value from the
view model.

If both permissions are granted, the function
locationUtils.requestLocationUpdates(view
Model = viewModel) is called. This method
likely starts the process of receiving location
updates, passing along the view model to
update the location data accordingly.

When location is not null, it
displays a Text composable
showing the latitude and
longitude:

MainActivity.kt

MainActivity.kt

Use the Emulator to test the location

15

Show the address based on location data

• Add a reverse function in LocationUtils.kt file

16

fun reverseGeocodeLocation(location: LocationData): String{

 val geocoder = Geocoder(context, Locale.getDefault())

 val coordinate = LatLng(location.latitude, location.longitude)

 val addresses:MutableList<Address>? = geocoder.getFromLocation(coordinate.latitude,coordinate.longitude,1)

 return if(addresses?.isNotEmpty() == true){

 addresses[0].getAddressLine(0)

 }else{

 "Address not found"

 }

}

 val location = viewModel.location.value

 val address = location?.let{

 locationUtils.reverseGeocodeLocation(location)

 }

LocationUtils.kt

MainActivity.kt

if(location != null){

 Text("Address: ${location.latitude} ${location.longitude} ¥n $address")

}else{

 Text(text =" Location not avalilabe")

}

MainActivity.kt

	スライド 1: Mobile Application Development
	スライド 2: Understand Location Services by simple sample
	スライド 3: Add Permissons for Location Serves in AndroidManifest.xml
	スライド 4: Check we have the permissions to access the location services
	スライド 5: The UI of check the permission
	スライド 6: Permission Request Launcher
	スライド 7: The Button Action
	スライド 8: Load the app to the MainActivity
	スライド 9: Add a Data class for location data
	スライド 10: Add the Dependency
	スライド 11: Add a ViewModel for Location data
	スライド 12: Add the viewModel to MainActiviity
	スライド 13: Create an instance of the Fused Location Provider Client to take the location data
	スライド 14: Request the location data to MainActivity and show it
	スライド 15: Use the Emulator to test the location
	スライド 16: Show the address based on location data

