Mobile Application Development | week8

\Vobile Application
Development

Week8 Use Location data in Android

Yi SUN
Kobe Institute of Computing

Understand Location Services by simple sample

« We are building a simple greeting app.

Open AndroidStudio
Select File > New > NewProject

Choose Empty Activity
Name: LocationSample

W=

Add Permissons for Location Serves in AndroidManifest.xm!|

 Edit the AndroidManifest.xml file in app/manifests/ folder

Android v AndroidManifest.xm/

<manifest xmIns:android="http://schemas.android.com/apk/res/android"
e E_]E- app xmins:tools="http://schemas.android.com/tools">

~ D manifests <uses-permission android:name="android.permission.INTERNET" />

— _ _ <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
M| AndroidManifest.xml » <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

> [kotlin+java

<application
> [2res android:allowBackup="true"

android:dataExtractionRules="@xml/data_extraction_rules"
> (7 Gradle Scripts

https://developer.android.com/reference/android/Manifest.permission

https://developer.android.com/reference/android/Manifest.permission

Check we have the permissions to access the
location services

Create a New class file LocationUtils to check the App have the permissions to access the
location services. This code is a utility for managing runtime location permissions in an Android
app. By abstracting the permission check into a reusable method (hasLocationPermission),
developers can easily verify if the necessary location access has been granted before performing

location-dependent operations.
LocationUtils.kt It takes a Context object, allowing it to interact

with Android’s permission system.
class LocationUtils(val context: Context)

fun hasLocationPermission(context: Context): Boolean{

if (ContextCompat.checkSelfPermission(
context,Manifest.permission.ACCESS_FINE_LOCATION) == PackageManager.PERMISSION GRANTED
&&

ContextCompat.checkSelfPermission(
context,Manifest.permission.ACCESS COARSE_LOCATION) == PackageManager.PERMISSION GRANTED

A
return true
lelse{
return false
} uses ContextCompat.checkSelfPermission() to check
} each permission.

} 4

The Ul of check the permission

The Android context used for permission

MainActivity.kt checks and Ul operations such as showing _
@Composable oasts or launching permission requests. The callback receives a map
fun LocationDisplay(Keys: Permission names (e.g.,
locationUtils: LocationUfils, _— Manifest.permission.ACCESS_FINE_LOCATION).V

| context: Context

A

val requestPermissionLauncher = rememberLa orActivityResult(

contract = ActivityResultContracts:RequestMultiplePermissions(),
onResult =
if(permissions[Manifest.permission.ACCESS COARSE_LOCATION] == true
&& permissions[Manifest.permission.ACCESS_FINE_LOCATION] == true){

alues: Booleans indicating whether each
permission was granted.

This function creates a launcher that can

/I I have access to location
Jelse{ \ requesting permissions. It uses the
I Ask for permission ActivityResultContracts.RequestMultiplePermis
) J sions() contract, which allows you to request
) several permissions at once.

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center){ <+ Ul Layout
Text(text =" Location not avalilabe")

Button(onClick = {
|if(locationUtils.hasLocationPermission(context)) |¢

The code calls
/IPermission already granted update the location locationUtils.hasLocationPermission(conte

Jelse{ xt) to determine if the required location

| /lrequest location permission permissions are already granted.

b

Text(text="Get Location")

}

1

Permission Request Launcher

MainActivity.kt Granted Case:
onResult = { permissions -> If both ACCESS_COARSE_LOCATION and
if(permissions[Manifest.permission.ACCESS_COARSE_LOCATION] == true .~ ACCESS_FINE_LOCATION are granted (true),
&& permissions[Manifest.permission.ACCESS_ FINE LOCATION] == true) the code can proceed with location-related

/I'1 have access to location

lelse{

val rationaleRequired = ActivityCompat.shouldShowRequestPermissionRationale(
context as MainActivity,

functionality (placeholder comment indicates
where additional logic would go).

Manifest.permission.ACCESS_FINE_LOCATION ‘\D
) || ActivityCompat.shouldShowRequestPermissionRationale(enied Case & Rationale Check:
context as MainActivity, If one or both permissions are not granted, it

Manifest.permission.ACCESS_COARSE_LOCATION checks whether the app should display a

rationale using
ActivityCompat.shouldShowRequestPermissio
nRationale.

)

if(rationaleRequired){
Toast.makeText(context,
"Location permission is required for this fea
Toast.LENGTH_LONG).show()
telse{
Toast.makeTe
"Location permission is required:
Toast.LENGTH_LONG).show()

———With Rationale:A Toast is shown explaining that
location permission is needed for the feature to

enable it in the Android Settings", work.

} ——Without Rationale:A different Toast informs the
user to enable the permission via Android
Settings. 6

The Button Action

MainActivity.kt
Column(modifier = Modifier.fillMaxSize(),
horizontal Alignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center){
Text(text =" Location not avalilabe™)

Button(onClick = {
if(locationUtils.hasLocationPermission(context))

{ . e
//Permission already granted update the location It permissions are,noi[granted’ ittriggers
Jelse{ the requestPermissionLauncher to
requestPermissionLauncher.launch(request both fine and coarse location
array Of(" permissions.

Manifest.permission.ACCESS FINE LOCATION,
Manifest.permission.ACCESS COARSE_LOCATION

)

)

}
DA

Text(text="Get Location")

}

L oad the app to the MainActivity

MainActivity.kt

class MainActivity : ComponentActivity() {
override fun onCreate(savedlnstanceState: Bundle?) { “’“
super.onCreate(savedinstanceState)
enableEdgeToEdge()
setContent {
LocationSampleTheme {
Scaffold(modifier = Modifier.filMaxSize()) { innerPadding ->

LocationApp(o
modiffer = Modifier.padding(innerPadding) Alow LocationSample to access
) this device’s location?
}
}
} o N
} Precise Approximate

} while using the app
@Composable R
fun LocationApp(modifier: Modifier){ Portalow

val context = LocalContext.current

val locationUtils = LocationUtils(context)

LocationDisplay(locationUtils=locationUtils, context = context)
1 8

Add a Data class for location data

Create a New data class file LocationData to store the location data include the latitude
data and longitude data.

LocationData.kt

data class LocationData (
val latitude: Double,
val longitude: Double

)

Add the Dependency

 Make sure you’ve added the correct dependency in your

build.gradle (app-level) file:

v (€7 Gradle Scripts
£3 build.gradle.kts (Project: tteess)
E‘E build.gradle kts (Module :app) »

= proguard-rules.pro (ProGuard Rules for ":app”)

{03 gradle.properties (Project Properties)

£63 gradle-wrapper.properties (Gradle Version) *
libs.versions.toml (Version Catalog)
£63 local.properties (SDK Location)

(3 settings.gradle.kts (Project Settings)

dependencies {

implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")
implementation("com.google.android.gms:play-services-location:21.3.0")
Implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)
implementation(libs.androidx.activity.compose)

Sync the Project:After making these changes, sync your
project in Android Studio to download the dependency.
Cache/Index Issues:|If everything seems correct but the
dependency still isn't found, try cleaning the project and
rebuilding it. You can also invalidate caches via File >
Invalidate Caches / Restart... in Android Studio.

10

https://developers.google.com/android/guides/setup

https://developers.google.com/android/guides/setup

Add a ViewModel for Location data

Create a New file LocationViewModel to present the location

LocationViewModel. .kt

class LocationViewModel: ViewModel() {
private val _location = mutableStateOf<LocationData?>(null)
val location: State<LocationData?> = |ocation

fun updateLocation(newLocation: LocationData){
_location.value = newlLocation

}
}

11

Add the viewModel to MainActiviity

MainActivity.kt

enableEdgeToEdge()
setContent {

val viewModel: LocationViewModel = viewModel()

LocationSampleTheme {

LocationApp(
viewModel
)
j
@Composable

fun LocationApp(modifier: Modifier,

}

@Composable
fun LocationDisplay(
locationUtils: LocationUtils,

Scaffold(modifier = Modifier.filMaxSize()) { innerPadding ->

modifier = Modifier.padding(innerPadding),

viewModel: LocationViewModel){

val context = LocalContext.current
val locationUtils = LocationUtils(context)
LocationDisplay(locationUtils=locationUtils viewModel, fontext = context)

viewModel: LocationViewModel,

context: Context

A

val requestPermissionLauncher = rememberLauncherForActivityResult(

12

Create an instance of the Fused Location Provider Client
J[O ta ke the |OCaJ[IOI’] data Initializes a client to interact with Google’s

location services. The Fused Location

| ocationUtils.kt Provider API efficiently combines signals
class LocationUtils(val context: Context) { / from GPS, Wi-Fi, and cellular networks to
provide accurate location data.
private val fusedLocationClient: FusedLocationProviderClient = LocationServices.getFusedLocationProviderClient(context)
@SuppressLint("MissingPermission™)* This annotation tells the
fun requestLocationUpdates(viewModel: LocationViewModel){ compiler to ignore warnings

val locationCallback<+_abject: LocationCallback(){ about missing location
override fun onLocationResu lonResult: LocationResult) { permission checks.
super.onLocationResult(locationResult)
locationResult.lastLocation?.let {
val location = LocationData(/atitude = it.latitude, longitude = it.longitude
viewModel.updateLocation(location)

Defines a callback that will be
triggered when new location data

} is available.
} Priority:Uses Priority.PRIORITY_HIGH_ACCURACY to request the most precise location available.
} Interval:The second parameter, 1000, represents the desired interval in milliseconds (i.e., 1 second)
for location updates.

val locationRequest = LocationRequest.Builder(Priority. PRIORITY HIGH ACCURACY,1000).build()

_fusedLocationClient.requestLocationUpdates(locationRequest,locationCallback, Looper.getMainLooper())

} Initiates the request for location updates using the configured request and callback.

locationRequest: Specifies the configuration for the updates.

locationCallback: The callback that handles incoming location data.

Looper.getMainLooper(): Ensures that the callback is executed on the main thread, which is necessary for updating Ul elements or interacting
with view models

https://deveioper.android.com/deveiop/sensors-and-iocation/iocation/retrieve-current 13

https://developer.android.com/develop/sensors-and-location/location/retrieve-current

Request the location data to

MainActivity.kt

MainActivity and show it

fun LocationDisplay(
locationUtils: LocationUtils .
: . . ’ Ret th t
viewModel: LocationViewModel, elrieves the curren

text: Context location value from the
. context: Contex ‘_‘/ view model.
| val location = viewModel.location.value

val requestPermissionLauncher = rememberLauncherForActivityResult(
contract = ActivityResultContracts.RequestMultiplePermissions(),
onResult = { permissions ->
if(permissions[Manifest.permission.ACCESS_COARSE_LOCATION] == true
&& permissions[Manifest.permission.ACCESS_FINE_LOCATION] == true){

MainActivity.kt

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center){

if(location !'= null){

Text("Address: ${location.latitude} ${location.longitude}")
}else{

Text(text =" Location not avalilabe")

locationUtils.requestLocationUpdates(viewModel=viewModel) I
Button(onClick = { X
telse{
val rationaleRequired = ActivityCompat.shouldShowRequestPermissionRationale(
context as MainActivity,

Manifest.permission.ACCESS_FINE_LOCATION
) || ActivityCompat.shouldShowRequestPermissionRationale(

When location is not null, it

[
If both permissions are granted, the function
locationUtils.requestlocationUpdates (view
Model = viewModel) is called. This method
likely starts the process of receiving location
updates, passing along the view model to
update the location data accordingly.

displays a Text composable
showing the latitude and
longitude:

14

Use the Emulator to test the locat

| # Medium Phone API 35 - Extended Controls

S Displays Single points Routes
O DU <« OO0 B @™ I
4 Cellular == Saved points
. 2 . Search \
4520 Q @ & § Battery \
Extended Controls
o5 rm MT. ED

®. Phone
@ Directional pad §
20y]
%, (Foster City

O NS
| ¥ Microphone N “(c} Points that you save shall appear here
(A= — N\

@ Fingerprint N\ Bair Island
| Belmont
| 7e, Virtual sensors)

| % Bugreport

- East Palo Alto
. WK Record and Playback E‘merald Hills Atherton g
Menlo.Park N .
), yl
p» Google Play \Palo Alto”

K \
) Woodside. N/
| GO QIQ E MapData Termsla/Reporta map error

| £ Settings

Enable GPS signal Import GPX/KML Set Location

| @ Help 9

Show the address based on location data

« Add a reverse function in LocationUtils.kt file

LocationUtils.kt

fun reverseGeocodeLocation(location: LocationData): String{

}

val geocoder = Geocoder(context, Locale.getDefault())
val coordinate = LatLng(location.latitude, location.longitude)

val addresses:MutableList<Address>? = geocoder.getFromLocation(coordinate.latitude,coordinate.longitude,1)

return if(addresses?.isNotEmpty() == true){
addresses[0].getAddressLine(0)

}else{
"Address not found"

}

Address: 0.3271567 32.615065
3w Port Bell Rd, Kampala, Uganda

Get Location

MainActivity.kt

val location = viewModel.location.value

MainActivity.kt

if

(location != null){

Text("Address: ${location.latitude} ${location.longitude} ¥n $address")

val address = location?-let{
locationUtils.reverseGeocodeLocation(location)

}

1
S

}

tseg
Text(text =" Location not avalilabe")

16

	スライド 1: Mobile Application Development
	スライド 2: Understand Location Services by simple sample
	スライド 3: Add Permissons for Location Serves in AndroidManifest.xml
	スライド 4: Check we have the permissions to access the location services
	スライド 5: The UI of check the permission
	スライド 6: Permission Request Launcher
	スライド 7: The Button Action
	スライド 8: Load the app to the MainActivity
	スライド 9: Add a Data class for location data
	スライド 10: Add the Dependency
	スライド 11: Add a ViewModel for Location data
	スライド 12: Add the viewModel to MainActiviity
	スライド 13: Create an instance of the Fused Location Provider Client to take the location data
	スライド 14: Request the location data to MainActivity and show it
	スライド 15: Use the Emulator to test the location
	スライド 16: Show the address based on location data

