
Mobile Application
Development

Week9 Add Location and Map to Android App

Yi SUN

Kobe Institute of Computing

Mobile Application Development | week9

1

Add the map for the Shopping App

1. Open the ShoppingApp Project

2. Add the navigation dependencies

3. Prepare the UI for Navigation

4. Set up the Routes

5. Implement the Navigation and pass the data

6. Serialization and Deserialization with Parceable

2

Set up the Google Cloud API Key for Map service

• Access and login https://cloud.google.com

• Access to the Console screen, and add a new project

• Access to the APIs & services, and click +Enable APIs and
servies

• Click the Maps SDK for Android and Enable Map service API

• Copy the API Key standby for use.

3

https://cloud.google.com/

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application

 android:allowBackup="true"

…

 android:theme="@style/Theme.ShoppingApp"

 tools:targetApi="31">

 <meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="AIzaSyA2_TSre2tKmKMu3Wl02U4e0hFz71kQwXs"

 />

 <activity

 android:name=".MainActivity"

Add Permissons for Location Serves in AndroidManifest.xml

• Edit the AndroidManifest.xml file in app/manifests/ folder

4

AndroidManifest.xml

https://developer.android.com/reference/android/Manifest.permission

The google Map API Key

https://developer.android.com/reference/android/Manifest.permission

dependencies {

 val nav_version = "2.8.8"

 implementation("androidx.navigation:navigation-compose:$nav_version")

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")

 implementation("com.squareup.retrofit2:retrofit:2.11.0")

 implementation("com.squareup.retrofit2:converter-gson:2.11.0")

 implementation("io.coil-kt.coil3:coil-compose:3.1.0")

 implementation("io.coil-kt.coil3:coil-network-okhttp:3.1.0")

 implementation("com.google.android.gms:play-services-location:21.3.0")

 implementation("com.google.maps.android:maps-compose:6.4.1")

 implementation(libs.androidx.core.ktx)

 implementation(libs.androidx.lifecycle.runtime.ktx)

Add the Dependency

• Make sure you’ve added the correct dependency in your
build.gradle (app-level) file:

5https://developers.google.com/android/guides/setup
https://developers.google.com/maps/documentation/a
ndroid-sdk/maps-compose

https://developers.google.com/android/guides/setup
https://developers.google.com/maps/documentation/android-sdk/maps-compose
https://developers.google.com/maps/documentation/android-sdk/maps-compose

Test to access API from web

• Access the Map API service from web browser

6https://developers.google.com/maps/documentation/geocoding/start

https://maps.googleapis.com/maps/api/geocode/json?latlng=0.327306,32.614431&key=“your API Key”

Latitude Longitude

https://developers.google.com/maps/documentation/geocoding/start
https://maps.googleapis.com/maps/api/geocode/json?latlng=0.327306,32.614431&key=“your

Add a Data class for location data

7

Create a New data class file LocationData to store the location data and the Goecoding
response.

LocationData.kt

data class LocationData(

 val latitude: Double,

 val longitude: Double,

 val address: String = ""

)

data class GeocodingResponse(

 val results: List<GeocodingResult>,

 val status: String

)

data class GeocodingResult(

 val formatted_address: String

)

Add the Location Selection Screen

8

@Composable

fun LocationSelectionScreen(

 location: LocationData,

 onLocationSelected: (LocationData) -> Unit

){

 val userLocation = remember {

 mutableStateOf(LatLng(location.latitude,location.longitude))

 }

 var cameraPositionState = rememberCameraPositionState{

 position = CameraPosition.fromLatLngZoom(userLocation.value,10f)

 }

}

Add a new file LocationSelectionScreen.kt

LocationSelectionScreen.kt

Add the Google Map to Screen

9
https://developers.google.com/maps/documentation/android-sdk/maps-compose

fun LocationSelectionScreen(

 location: LocationData,

 onLocationSelected: (LocationData) -> Unit

){

 val userLocation = remember {

 mutableStateOf(LatLng(location.latitude,location.longitude))

 }

 var cameraPositionState = rememberCameraPositionState{

 position = CameraPosition.fromLatLngZoom(userLocation.value,10f)

 }

 Column(modifier = Modifier.fillMaxSize()) {

 GoogleMap(

 modifier = Modifier.weight(1f).padding(top=16.dp),

 cameraPositionState = cameraPositionState,

 onMapClick = {

 userLocation.value = it

 }

){

 Marker(state = rememberMarkerState(position = userLocation.value))

 }

 var newLocation:LocationData

 Button(onClick = {

 newLocation = LocationData(userLocation.value.latitude,userLocation.value.longitude)

 onLocationSelected(newLocation)

 }) {

 Text("Set Location")

 }

 }

}

When the button is clicked, it creates a new
LocationData object using the current latitude and
longitude from userLocation and then calls the
onLocationSelected callback with this new location.
This confirms the user’s selection.

GoogleMap Component:
Placed inside the Column with modifiers to give it
weight (it takes most of the space) and a top
padding.
cameraPositionState: Passed to control the current
view of the map.
onMapClick:A lambda that gets triggered when the
map is clicked. It updates the userLocation state
with the clicked position, meaning the marker on
the map will move to where the user tapped.
Marker:Within the map, a Marker is added. It uses
rememberMarkerState with the current
userLocation to indicate the selected position
visually on the map.

Created using rememberCameraPositionState and
initialized with a CameraPosition centered at
userLocation.value and a zoom level of 10. This state
controls the view (position and zoom) of the Google
Map.

https://developers.google.com/maps/documentation/android-sdk/maps-compose

Add the location view model

10

class LocationViewModel: ViewModel(){

 private val _location = mutableStateOf<LocationData?>(null)

 val location: State<LocationData?> = _location

 fun updateLocation(newLocation: LocationData){

 _location.value = newLocation

 }

}

LocationViewModel.kt

Add the location data to MainViewModel

11

class MainViewModel:ViewModel() {

 private val _productsState = mutableStateOf(ProductState())

 val productState: State<ProductState> = _productsState

 private val _selectedLocation = mutableStateOf<LocationData?>(null)

 val selectedLocation: State<LocationData?> = _selectedLocation

 init {

 fetchProducts()

 }

 fun updateSelectedLocation(location: LocationData) {

 _selectedLocation.value = location

 }

 private fun fetchProducts(){

 viewModelScope.launch {

 try {

MainViewModel.kt

Add a Button at ProductDetail Screen

12

fun ProductDetailScreen(

 product: Product,

 deliveryLocation: LocationData?,

 onSelectLocation: ()-> Unit

){

 Column(modifier = Modifier

…

)

 {

 Text(text=product.title, textAlign = TextAlign.Center)

 Image(

 painter = rememberAsyncImagePainter(product.image),

…

)

 Text(text=product.description,

…

)

 Spacer(modifier = Modifier.height(16.dp))

 Button(onClick = onSelectLocation) {

 Text(text = "Select Delivery Location")

 }

 Text(

 text = "Delivery Address:",

 modifier = Modifier.padding(top = 16.dp),

 textAlign = TextAlign.Center

)

A nullable LocationData that represents
the current delivery location

A callback function
that gets invoked
when the user wants
to choose or change
the delivery location.

Triggers the
onSelectLocation
callback when
clicked.

ProductDetailScreen.kt

Regisiter the location screen at route

13

sealed class Screen(val route:String) {

 object ShoppingScreen:Screen("main_screen")

 object ItemDetailScreen:Screen("detail_screen")

 object LocationSelectionScreen:Screen("location_screen")

}

Screen.kt

Modify the navigation

14

fun ShoppingApp(navController: NavHostController, modifier: Modifier){

 val productViewModel: MainViewModel = viewModel()

 val viewstate by productViewModel.productState

 val selectedLocation by productViewModel.selectedLocation

 NavHost(navController=navController, startDestination = Screen.ShoppingScreen.route){

 composable(route=Screen.ShoppingScreen.route){

 ShoppingScreen(viewstate=viewstate, navigationToDetail = {

…..}

 composable(route=Screen.ItemDetailScreen.route){

 val product = navController.previousBackStackEntry?.savedStateHandle?.

 get<Product>("item")?: Product(0,"",0.0,"","")

 ProductDetailScreen(

 product=product,

 deliveryLocation = selectedLocation,

 onSelectLocation = {

 navController.navigate(Screen.LocationSelectionScreen.route)

 }

….

 composable(route=Screen.LocationSelectionScreen.route) {

 LocationSelectionScreen(

 location = selectedLocation ?: LocationData(0.0,0.0),

 onLocationSelected = {location ->

 productViewModel.updateSelectedLocation(location)

 navController.popBackStack()

 }

Observes the current
selected location from the
ViewModel.

Displays detailed information about the
selected product.
Shows the current deliveryLocation.
Provides a callback (onSelectLocation)
that navigates to the
LocationSelectionScreen when the user
wants to select or change the delivery
location.

Displays a map or interface to pick a
location.
Uses the current selectedLocation (or a
default location if none is set).
Callback onLocationSelected:
When a new location is selected, it
updates the ViewModel’s state by
calling updateSelectedLocation.
Then, it navigates back (pops the back
stack) to return to the previous screen
(likely the item detail screen).

ShoppingApp.kt

Finalizing the Location Selection Screen

15

fun LocationSelectionScreen(

 location: LocationData,

 onLocationSelected: (LocationData) -> Unit

) {

 val context = LocalContext.current

 val locationUtils = remember { LocationUtils(context) }

 val locationViewModel = remember { LocationViewModel() }

 // Default to Kampala coordinates if no location is available

 val defaultLocation = LatLng(0.3476, 32.5825) // Kampala coordinates

 var userLocation by remember {

 mutableStateOf(defaultLocation)

 }

 var currentGpsLocation by remember {

 mutableStateOf<LatLng?>(null)

 }

 var isLoading by remember { mutableStateOf(true) }

 var currentAddress by remember { mutableStateOf("") }

 var hasReceivedLocation by remember { mutableStateOf(false) }

 var showPermissionDialog by remember { mutableStateOf(false) }

 val markerState = rememberMarkerState(position = userLocation)

 val cameraPositionState = rememberCameraPositionState {

 position = CameraPosition.fromLatLngZoom(userLocation, 15f)

 }

LocationSelectionScreen.kt

Prepare the State Variables and
Default Values

Context and Utility Setup

// Permission launcher

val permissionLauncher = rememberLauncherForActivityResult(

 contract = ActivityResultContracts.RequestMultiplePermissions()

) { permissions ->

 val locationPermissionsGranted = permissions.entries.all { it.value }

 if (locationPermissionsGranted) {

 locationUtils.requestLocationUpdates(locationViewModel)

 } else {

 // Use fallback location if permissions denied

 val fallbackLocation = if (location.latitude != 0.0 || location.longitude != 0.0) {

 LatLng(location.latitude, location.longitude)

 } else {

 defaultLocation

 }

 userLocation = fallbackLocation

 markerState.position = fallbackLocation

 cameraPositionState.position = CameraPosition.fromLatLngZoom(fallbackLocation, 15f)

 isLoading = false

 }

}

// Try to get current location first

LaunchedEffect(Unit) {

 if (locationUtils.hasLocationPermission(context)) {

 locationUtils.requestLocationUpdates(locationViewModel)

 } else {

 showPermissionDialog = true

 }

} 16

Finalizing the Location Selection Screen

Permission Launcher:
Uses rememberLauncherForActivityResult to
request location permissions at runtime:

LocationSelectionScreen.kt

A LaunchedEffect runs on composition:
This checks for permissions and either
requests location updates or shows the
permission dialog.

17

if (showPermissionDialog) {

 AlertDialog(

 onDismissRequest = {

 showPermissionDialog = false

 // Use fallback location if dialog dismissed

 val fallbackLocation = if (location.latitude != 0.0 || location.longitude != 0.0) {

 LatLng(location.latitude, location.longitude)

 } else {

 defaultLocation

 }

 userLocation = fallbackLocation

 markerState.position = fallbackLocation

 cameraPositionState.position = CameraPosition.fromLatLngZoom(fallbackLocation, 15f)

 isLoading = false
 },

Finalizing the Location Selection Screen
Permission Dialog screen (1/3)

An alert dialog that appears when the app needs location permission but it hasn't
been granted yet. It uses an if statement to check if showPermissionDialog is true,
and if so, displays an AlertDialog with several behaviors:

Sets showPermissionDialog to false,
hiding the dialog.
Determines a fallback location. It
checks if the provided location has
non-zero latitude or longitude. If yes,
it uses that location; otherwise, it
defaults to defaultLocation.
Updates userLocation, the marker's
position (markerState.position), and
the map's camera position
(cameraPositionState) to this fallback
location.
Sets isLoading to false, indicating
that any loading state (like waiting for
permission or location data) is
complete.

18

title = { Text("Location Permission Required") },

 text = { Text("This app needs access to location to show your

current position on the map. Would you like to grant permission?") },

 confirmButton = {

 Button(onClick = {

 showPermissionDialog = false

 permissionLauncher.launch(

 arrayOf(

 Manifest.permission.ACCESS_FINE_LOCATION,

 Manifest.permission.ACCESS_COARSE_LOCATION

)

)

 }) {

 Text("Grant Permission")

 }

 },

Finalizing the Location Selection Screen

Title and Text:
The dialog displays a title ("Location Permission
Required") and a message explaining that the app needs
location access to show the current position on the map.

Confirm Button:When the user taps the "Grant Permission"
button:
The dialog is hidden by setting showPermissionDialog to
false.
The app requests the necessary location permissions
(ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION) by launching the
permissionLauncher. This will prompt the system
permission dialog for the user to grant or deny location
access.

Permission Dialog screen(2/3)

19

dismissButton = {

 Button(onClick = {

 showPermissionDialog = false

 // Use fallback location if permission denied

 val fallbackLocation = if (location.latitude != 0.0 || location.longitude != 0.0) {

 LatLng(location.latitude, location.longitude)

 } else {

 defaultLocation

 }

 userLocation = fallbackLocation

 markerState.position = fallbackLocation

 cameraPositionState.position =

CameraPosition.fromLatLngZoom(fallbackLocation, 15f)

 isLoading = false

 }) {

 Text("Not Now")

 }

 }

)
}

Finalizing the Location Selection Screen

Dismiss Button:
When the user taps the "Not Now" button:
The dialog is dismissed similarly by setting
showPermissionDialog to false.
It also calculates the fallback location
(using the same logic as in
onDismissRequest) and updates
userLocation, markerState.position, and
cameraPositionState accordingly.
Finally, it sets isLoading to false, ending any
loading indicators.

Permission Dialog screen (3/3)

20

Finalizing the Location Selection Screen

// Observe location updates

LaunchedEffect(locationViewModel.location.value) {

 locationViewModel.location.value?.let { newLocation ->

 if (!hasReceivedLocation && (newLocation.latitude != 0.0 || newLocation.longitude !=

0.0)) {

 val currentLocation = LatLng(newLocation.latitude, newLocation.longitude)

 userLocation = currentLocation

 currentGpsLocation = currentLocation

 markerState.position = currentLocation

 cameraPositionState.position = CameraPosition.fromLatLngZoom(currentLocation,

15f)

 hasReceivedLocation = true

 } else if (newLocation.latitude != 0.0 || newLocation.longitude != 0.0) {

 // Update current GPS location without moving the marker

 currentGpsLocation = LatLng(newLocation.latitude, newLocation.longitude)

 }

 isLoading = false

 }

}

Location Updates and Reverse Geocoding

Observing Location Updates: A LaunchedEffect listens for changes in locationViewModel.location.value:

21

Finalizing the Location Selection Screen

// Update address when location changes

LaunchedEffect(userLocation) {

 currentAddress = withContext(Dispatchers.IO) {

 locationUtils.reverseGeocodeLocation(LocationData(userLocation.latitude,

userLocation.longitude))

 }

 isLoading = false

}

// Cleanup location updates when the composable is disposed

DisposableEffect(Unit) {

 onDispose {

 // Any cleanup if needed

 }

}

Another LaunchedEffect triggers
when userLocation changes. It uses
a background coroutine
(withContext(Dispatchers.IO)) to
perform reverse geocoding:

A cleanup block is provided for
when the composable leaves the
composition:

22

Column(

 modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally

) {

 if (isLoading) {

 CircularProgressIndicator(modifier = Modifier.padding(16.dp))

 } else {

 GoogleMap(

 modifier = Modifier

 .weight(1f)

 .padding(top = 16.dp),

 cameraPositionState = cameraPositionState,

 onMapClick = { latLng ->

 userLocation = latLng

 markerState.position = latLng
 } UI Layout
) {

 Marker(

 state = markerState,

 title = "Selected Location",

 snippet = currentAddress

)

 }

 Text(

 text = currentAddress,

 modifier = Modifier.padding(16.dp)

)

Finalizing the Location Selection Screen
UI Layout

Displays the map with the
current camera position and
marker. Tapping on the map
updates the userLocation:

If isLoading is true, a
CircularProgressIndicator is
shown. Otherwise, the Google
Map and additional UI elements
are displayed.

23

Row(

 modifier = Modifier.padding(bottom = 16.dp),

 verticalAlignment = Alignment.CenterVertically

) {

 Button(

 onClick = {

 currentGpsLocation?.let { gpsLocation ->

 userLocation = gpsLocation

 markerState.position = gpsLocation

 cameraPositionState.position = CameraPosition.fromLatLngZoom(gpsLocation, 15f)

 }

 },

 enabled = currentGpsLocation != null && locationUtils.hasLocationPermission(context)

) {

 Text("My Location")

 }

 Spacer(modifier = Modifier.width(16.dp))

 Button(

 onClick = {

 onLocationSelected(

 LocationData(

 latitude = userLocation.latitude,

 longitude = userLocation.longitude,

 address = currentAddress

)

)

 }

) {

 Text("Set Location")

 }

 }

 }

}

Defines a horizontal row that
contains two buttons, "My
Location" and "Set Location",

Finalizing the Location Selection Screen

Finalizing the ProductDetail Screen

24

Button(onClick = onSelectLocation) {

 Text(text = if (deliveryLocation == null) "Select Delivery Location" else "Change Delivery Location")

}

if (deliveryLocation != null) {

 Text(

 text = "Delivery Address:",

 modifier = Modifier.padding(top = 16.dp),

 textAlign = TextAlign.Center

)

 Text(

 text = deliveryLocation.address.ifEmpty {

 "Lat: ${deliveryLocation.latitude}, Long: ${deliveryLocation.longitude}"

 },

 modifier = Modifier.padding(top = 8.dp),

 textAlign = TextAlign.Center

)

}

	スライド 1: Mobile Application Development
	スライド 2: Add the map for the Shopping App
	スライド 3: Set up the Google Cloud API Key for Map service
	スライド 4: Add Permissons for Location Serves in AndroidManifest.xml
	スライド 5: Add the Dependency
	スライド 6: Test to access API from web
	スライド 7: Add a Data class for location data
	スライド 8: Add the Location Selection Screen
	スライド 9: Add the Google Map to Screen
	スライド 10: Add the location view model
	スライド 11: Add the location data to MainViewModel
	スライド 12: Add a Button at ProductDetail Screen
	スライド 13: Regisiter the location screen at route
	スライド 14: Modify the navigation
	スライド 15: Finalizing the Location Selection Screen
	スライド 16: Finalizing the Location Selection Screen
	スライド 17: Finalizing the Location Selection Screen
	スライド 18: Finalizing the Location Selection Screen
	スライド 19: Finalizing the Location Selection Screen
	スライド 20: Finalizing the Location Selection Screen
	スライド 21: Finalizing the Location Selection Screen
	スライド 22: Finalizing the Location Selection Screen
	スライド 23: Finalizing the Location Selection Screen
	スライド 24: Finalizing the ProductDetail Screen

