Mobile Application Development | week9

\Vobile Application
Development

Week9 Add Location and Map to Android App

Yi SUN
Kobe Institute of Computing

Add the map Tor the Shopping App

Open the ShoppingApp Project

Add the navigation dependencies

Prepare the Ul for Navigation

Set up the Routes

Implement the Navigation and pass the data
Serialization and Deserialization with Parceable

O O A W=

Set up the Google Cloud APl Key for Map service

« Access and login https://cloud.google.com
« Access to the Console screen, and add a new project

e Access to the APIs & services, and click +Enable APIls and
servies

 Click the Maps SDK for Android and Enable I\/Iap service AP
« Copy the API Key standby for use. *

Welcome to the API Library

= Filter
Maps Jave

aaaaaa

https://cloud.google.com/

Add Permissons for Location Serves in AndroidManifest.xm!|

 Edit the AndroidManifest.xml file in app/manifests/ folder

Android

v [P app

~ [manifests

AndroidManifest.xml/

M AndroidManifest.xml

> [kotlin+java
> [2res
> (7 Gradle Scripts

<manifest xmIns:android="http://schemas.android.com/apk/res/android"
xmlins:tools="http://schemas.android.com/tools">

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<application
android:allowBackup="true"

android:theme="@style/Theme.ShoppingApp" The google I\/Iap AP| Key

tools:targetApi="31">

<meta-data /
android:name="com.google.android.geo.APl_KEY"
android:value="AlzaSyA2_TSre2tKmKMu3WI02U4e0hFz71kQwXs"
/>

<activity

android:name=".MainActivity"

https://developer.android.com/reference/android/Manifest.permission

https://developer.android.com/reference/android/Manifest.permission

Add the Dependency

 Make sure you’ve added the correct dependency in your
build.gradle (app-level) file:

v (€7 Gradle Scripts dependencies {

£3 build.gradle.kts (Project: tteess)

val nav_version = "2.8.8"
£ build.gradle.kts (Module :app) » implementation("androidx.navigation:navigation-compose:$nav_version")
implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.8.7")
implementation("com.squareup.retrofit2:retrofit:2.11.0")

= proguard-rules.pro (ProGuard Rules for ":app”)

f03 gradle.properties (Project Properties) implementation("com.squareup.retrofit2:converter-gson:2.11.0")
_ | implementation("io.coil-kt.coil3:coil-compose:3.1.0")
£23 gradle-wrapper.properties (Gradle Version) implementation("io.coil-kt.coil3:coil-network-okhttp:3.1.0")

implementation("com.google.android.gms:play-services-location:21.3.0")
implementation("com.google.maps.android:maps-compose:6.4.1")

£33 local.properties (SDK Location) Implementation(libS.androidx.core.Kix)

implementation(libs.androidx.lifecycle.runtime.ktx)

libs.versions.toml (Version Catalog)

(3 settings.gradle.kts (Project Settings)

https://developers.google.com/maps/documentation/a

https://developers.soogle.com/android/guides/setup ndroid-sdk/maps-compose

https://developers.google.com/android/guides/setup
https://developers.google.com/maps/documentation/android-sdk/maps-compose
https://developers.google.com/maps/documentation/android-sdk/maps-compose

Test to access APl from web

« Access the Map API service from web browser

https://maps.googleapis.com/maps/api/geocode/json?lating= 2.614431&key="your API Key”
[B4 S maps.googleapis.com/maps/a; X + : N) / \
_ | . | Latitude Longitude
< 6 %s maps.googleapis.com/maps/api/geocode/json?lating=0.327306,32.61443 1&key=AlzaSyDvNvIf

FUF1 FUIRD

"plus code” :

"compound code” : "8JGT+WQF Kampala, Uganda”
"global code” : "6GGJ8JGTHWAF”

"results” :
"address components” :

~long name” : "33",
"short name” : "3a”,
types” :
"street number”
{
~long name” : "Port Bell Road”

"short_name” : "Port Bell Rd
types” :

"route”
{
~long name” : "Nakawa",

"short name” : "Nakawa’,
tvoes” :

https://developers.google.com/maps/documentation/geocoding/start 6

https://developers.google.com/maps/documentation/geocoding/start
https://maps.googleapis.com/maps/api/geocode/json?latlng=0.327306,32.614431&key=“your

Add a Data class for location data

Create a New data class file LocationData to store the location data and the Goecoding
response.

LocationData.kt

data class LocationData(
val latitude: Double,
val longitude: Double,
val address: String ="

)

data class GeocodingResponse(
val results: List<GeocodingResult>,
val status: String

)

data class GeocodingResult(
val formatted_address: String

)

Add the Location Selection Screen

Add a new file LocationSelectionScreen.kt

LocationSelectionScreen.kt

@Composable
fun LocationSelectionScreen(
location: LocationData,
onLocationSelected: (LocationData) -> Unit
il
val userLocation = remember {
mutableStateOf(LatLng(location.latitude,location.longitude))

}

var cameraPositionState = rememberCameraPositionStatef
position = CameraPosition.fromLatLngZoom(userLocation.value,10f)

}
}

Ad d th e G O Og| e I\/I a p J[O S C re e n Created using rememberCameraPositionState and

initialized with a CameraPosition centered at

fun LocationSelectionScreen(userlLocation.value and a zoom level of 10. This state
location: LocationData, controls the view (position and zoom) of the Google
onLocationSelected: (LocationData) -> Unit Map P g

A :

val userLocation = remember {
mutableStateOf(LatLng(location.latitude,location.longitude))

) GoogleMap Component:

var cameraPositionState = rememberCameraPositionState{ Placed inside the Column with modifiers to give it
position = CameraPosition.fromLatLngZoom(userLocation.value,10f) weight (it takes most of the space) and a top

ki padding.

Column(modifier = Modifier.fillMaxSize()) { cameraPositionState: Passed to control the current
GoogleMap(

. e . . view of the map.
modifier = Modifier.weight(1f).padding(top=16.dp), . .
cameraPositionState = cameraPositionState, | onMapClick:A lambda that gets triggered when the

onMapClick = { / map is clicked. It updates the userLocation state
userLocation.value = it with the clicked position, meaning the marker on
} the map will move to where the user tapped.
A - _ Marker:Within the map, a Marker is added. It uses
Marker(state = rememberMarkerState(position = userLocation.value)) rememberMarkerState with the current

} . L -
var newLocation:LocationData userLocation to indicate the selected position
visually on the map.

Button(onClick = {
newLocation = LocationData(userLocation.value.latitude,userLocation.value.longitude)
onlLocationSelected(newLocation)

When the button is clicked, it creates a new

D { LocationData object using the current latitude and
Text("Set Location") longitude from userLocation and then calls the
} onlLocationSelected callback with this new location.
} This confirms the user’s selection.

}
https://developers.google.com/maps/documentation/android-sdk/maps-compose

https://developers.google.com/maps/documentation/android-sdk/maps-compose

Add the location view moadel

LocationViewModel. kt

class LocationViewModel: ViewModel(){
private val location = mutableStateOf<LocationData?>(null)
val location: State<LocationData?> = location

fun updatelLocation(newLocation: LocationData){
_location.value = newlLocation

}
}

10

Add the location data to MainViewModel

MainViewModel kt

class MainViewModel:ViewModel() {
private val _productsState = mutableStateOf(ProductState())
val productState: State<ProductState> = productsState

private val _selectedLocation = mutableStateOf<LocationData?>(null)
val selectedLocation: State<LocationData?> = selectedLocation

init {
fetchProducts()
}

fun updateSelectedLocation(location: LocationData) {
_selectedLocation.value = location

}

private fun fetchProducts(){
viewModelScope.launch {

try {

11

Add a Button at ProductDetail Screen

ProductDetailScreen. kt

deliveryLocation: LocationData?”]
onSelectLocation: ()-> Unit _

i
Column(modifier = Modifier
)
{

Image(

)

Text(text=product.description,

)

fun ProductDetailScreen(A nullable LocationData that represents
product: Product, the current delivery location

A callback function
that gets invoked
when the user wants
to choose or change
the delivery location.

Text(text=product.title, textAlign = TextAlign.Center)

painter = rememberAsynclmagePainter(product.image),

Triggers the
onSelectLocation
callback when
clicked.

Button(onClick = onSelectLocation) {
Text(text = "Select Delivery Location™)
}

Text(
text = "Delivery Address:",
modifier = Modifier.padding(top = 16.dp),
textAlign = TextAlign.Center

Spacer(modifier = Modifier.height(16.dp)) ,

51890 @8 B kel |
Mens Cotton Jacket

great outerwear jackets for Spring/Autumn/
Winter, suitable for many occasions, such as
working, hiking, camping, mountain/rock climbing,
cycling, traveling or other outdoors. Good gift
choice for you or your family member. A warm
hearted love to Father, husband or son in this
thanksgiving or Christmas Day.

Select Delivery Location

Delivery Address:

12

Regisiter the location screen at route

Screen. kt

sealed class Screen(val route:String) {
object ShoppingScreen:Screen("main_screen”)
object ItemDetailScreen:Screen('detail _screen")

object LocationSelectionScreen:Screen("location_screen”)

13

Modity the navigation goppimngassse

fun ShoppingApp(navController: NavHostController, modifier: Modifier){ Observes the current
val productViewModel: MainViewModel = viewModel() _ selected location from the

val viewstate by productViewModel.productState / ViewModel
val selectedLocation by productViewModel.selectedLocation '
NavHost(navController=navController, startDestination = Screen.ShoppingScreen.route){

composable(route=Screen.ShoppingScreen.route){
ShoppingScreen(viewstate=viewstate, navigationToDetalil = {

Displays detailed information about the
selected product.

cer} _ Shows the current deliveryLocation.
composable(route=Screen.ltemDetailScreen.route){ Provides a callback (onSelectLocation)
val product = navController.previousBackStackEntry?.savedStateHandle?. that navigates to the
get<Product>("item")?: Product(0,",0.0," ") LocationSelectionScreen when the user
ProductDetailScreen(wants to select or change the delivery
location.

product=product,

deliveryLocation = selectedLocation, Displays a map or interface to pick a

onSelectLocation = { location.
navController.navigate(Screen.LocationSelectionScreen.route) Uses the current selectedLocation (or a
} default location if none is set).

Callback onLocationSelected:
When a new location is selected, it

composable(route=Screen.LocationSelectionScreen.route) { L : ,
. : updates the ViewModel's state by
LocatlonSeIectlonScreen(_) calling updateSelectedLocation.
location = selectedLocation ?: LocationData(0.0,0.0), Then, it navigates back (pops the back
onLocationSelected = {location -> stack) to return to the previous screen
productViewModel.updateSelectedLocation(location) (likely the item detail screen).

navController.popBackStack()
} 14

Finalizing the Location Selection Screen

fun LocationSelectionScreen(

)

location: LocationData,
onLocationSelected: (LocationData) -> Unit

val context = LocalContext.current

LocationSelectionScreen. kt

val locationUtils = remember { LocationUtils(context) } . Context and Utility Setup

val locationViewModel = remember { LocationViewModel() }

// Default to Kampala coordinates if no location is available
val defaultLocation = LatLng(0.3476, 32.5825) // Kampala coordinateg

var userLocation by remember {
mutable StateOf(defaultLocation)

}

var currentGpsLocation by remember {
mutableStateOf<LatLng?>(null)

}

var isLoading by remember { mutableStateOf(true) }

var currentAddress by remember { mutableStateOf("") }

var hasReceivedLocation by remember { mutableStateOf(false) }
var showPermissionDialog by remember { mutableStateOf(false) }

val markerState = rememberMarkerState(position = userLocation)
val cameraPositionState = rememberCameraPositionState {
position = CameraPosition.fromLatLngZoom(userLocation, 15f)

}

Prepare the State Variables and
Default Values

15

Finalizing the Location Selection Screen

/| Permission launcher

val permissionLauncher = rememberLauncherForActivityResult(
contract = ActivityResuItContracts.RequestMuItipIePermissions‘(\ Permission Launcher:
) { permissions -> Uses rememberLauncherForActivityResult to
val locationPermissionsGranted = permissions.entries.all { it.value } request location permissions at runtime:
If (locationPermissionsGranted) {
locationUtils.requestLocationUpdates(locationViewModel)
} else {
// Use fallback location if permissions denied
val fallbackLocation = if (location.latitude != 0.0 || location.longitude != 0.0) {
LatLng(location.latitude, location.longitude)
} else {
defaultLocation
}
userLocation = fallbackLocation
markerState.position = fallbackLocation
cameraPositionState.position = CameraPosition.fromLatLngZoom(fallbackLocation, 15f)
iIsLoading = false

LocationSelectionScreen. kt

}
}

/I Try to get current location first

Lagnched_Effecf[(Umt){ . . A LaunchedEffect runs on composition:
if (locationUtils.hasLocationPermission(context)) This checks for permissions and either
locationUtils.requestLocationUpdates(locationViewModel) cequests Iocatioa undates or shows the

} else { . P

. : ermission dialog.
showPermissionDialog = true P g

}

} 16

Finalizing the Location Selection Screen

Permission Dialog screen (1/3) Sets showPermissionDialog to false,

hiding the dialog.

Determines a fallback location. It
checks if the provided location has
non-zero latitude or longitude. If yes,
it uses that location; otherwise, it
defaults to defaultLocation.

Updates userLocation, the marker's
position (markerState.position), and
the map's camera position
(cameraPositionState) to this fallback
location.

ets isLoading to false, indicating
that any loading state (like waiting for
permission or location data) is
complete.

An alert dialog that appears when the app needs location permission but it hasn't
been granted yet. It uses an if statement to check if showPermissionDialog is
and if so, displays an AlertDialog with several behaviors:

if (showPermissionDialog) {
AlertDialog(
onDismissRequest = {
showPermissionDialog = false
// Use fallback location if dialog dismissed
val fallbackLocation = if (location.latitude != 0.0 || location.longitu
LatLng(location.latitude, location.longitude)
} else {
defaultLocation

1= 0.0) {

}

userLocation = fallbackLocation

markerState.position = fallbackLo
cameraPositionState.positiorr= CameraPosition.fromLatLngZoom(fallbackLocation, 15f)
iIsLoading = false

17

Finalizing the Location Selection Screen

Permission Dialog screen(2/3)

title = { Text("Location Permission Required") }, Title and Text: . | o
text = { Text("This app needs access to location to show your The dialog displays a title ("Location Permission

o . .. B Required") and a message explaining that the app needs
current position on the map. Would you like to grant permission?") }, location access to show the current position on the map.
confirmButton = {

Button(onClick = { Confirm Button:When the user taps the "Grant Permission"
showPermissionDialog = false button:
permissionLauncher.launch(The dialog is hidden by setting showPermissionDialog to
anayOfl The app requests th ocation permiss
: i e app requests the necessary location permissions
Man!fest.perm!ss!on.ACCESS_FlNE_LOCATION, (ACCESS FINE LOCATION and
Manifest.permission.ACCESS COARSE_LOCATION ACCESS_COARSE_LOCATION) by launching the
) permissionLauncher. This will prompt the system
) permission dialog for the user to grant or deny location
A access.
Text("Grant Permission")

}
17

18

Finalizing the Location Selection Screen

Permission Dialog screen (3/3)

dismissButton = { Dismiss Button:
Button(onClick = { When the user taps the "Not Now" button:
showPermissionDialog = false The dialog is dismissed similarly by setting

showPermissionDialog to false.
It also calculates the fallback location
(using the same logic as in

I/ Use fallback location if permission denied
val fallbackLocation = if (location.latitude != 0.0 || location.longitude != 0.0) {

LatLng(location.latitude, location.longitude) onDismissRequest) and updates
} else { userLocation, markerState.position, and
defaultLocation cameraPositionState accordingly.
} Finally, it sets isLoading to false, ending any
userLocation = fallbackLocation loading indicators.

markerState.position = fallbackLocation
cameraPositionState.position =
CameraPosition.fromLatLngZoom(fallbackLocation, 15f)
isLoading = false
DA
Text("Not Now")
}
}
)
}

19

Finalizing the Location Selection Screen

Location Updates and Reverse Geocoding

Observing Location Updates: A LaunchedEffect listens for changes in locationViewModel.location.value:

// Observe location updates
LaunchedEffect(locationViewModel.location.value) {
locationViewModel.location.value?.let { newLocation ->
if (lhasReceivedLocation && (newLocation.latitude != 0.0 || newLocation.longitude !=

0.0)) {

val currentLocation = LatLng(newLocation.latitude, newLocation.longitude)
userLocation = currentLocation

currentGpsLocation = currentLocation
markerState.position = currentLocation

cameraPositionState.position = CameraPosition.fromLatLngZoom(currentLocation,
15f)

hasReceivedLocation = true

} else if (newLocation.latitude != 0.0 || newLocation.longitude != 0.0) {
// Update current GPS location without moving the marker
currentGpsLocation = LatLng(newLocation.latitude, newLocation.longitude)

}

IsLoading = false

20

Finalizing the Location Selection Screen

Another LaunchedEffect triggers
when userLocation changes. It uses
a background coroutine
(withContext(Dispatchers.l0)) to
perform reverse geocoding:

/l Update address when location changes
LaunchedEffect(userLocation) {
currentAddress = withContext(Dispatchers.lO) {
locationUtils.reverseGeocodeLocation(LocationData(userLocation.latitude,
userLocation.longitude))

}

isLoading = false

}

/[Cleanup location updates when the composable is disposed

DisposableEffect(Unit) { . :
onDispose { A cleanup block is provided for

/I Any cleanup if needed when the composable leaves the
} composition:

}

21

Finalizing the Location Selection Screen

Column(
modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally
) {
if (isLoading) {
CircularProgressindicator(modifier = Modifier.padding(16.dp))
} else {
GoogleMap(
modifier = Modifier
.weight(1f)
.padding(top = 16.dp),
cameraPositionState = cameraPositionState,
onMapClick = { latLng ->
userLocation = latLng
markerState.position = latLng
} Ul Layout
) {
Marker(
state = markerState,
title = "Selected Location",
snippet = currentAddress

)
}

Text(
text = currentAddress,
modifier = Modifier.padding(16.dp)

)

Ul Layout

If isLoading is true, a
CircularProgressindicator is

—— shown. Otherwise, the Google
Map and additional Ul elements
are displayed.

J———

Displays the map with the
current camera position and
—— marker. Tapping on the map
updates the userlLocation:

22

Finalizing the Location Selection Screen

}

Row(

}

modifier = Modifier.padding(bottom = 16.dp),
verticalAlignment = Alignment.CenterVertically

) {
Button(
onClick = {
currentGpsLocation?.let { gpsLocation ->
userLocation = gpsLocation
markerState.position = gpsLocation
cameraPositionState.position = CameraPosition.fromLatLngZoom(gpsLocation, 15f)
}
|3
enabled = currentGpsLocation != null && locationUtils.hasLocationPermission(context)
) {
Text("My Location™)
}

}

Spacer(modifier = Modifier.width(16.dp))

Button(
onClick = {
onLocationSelected(
LocationData(
latitude = userLocation.latitude,
longitude = userLocation.longitude,
address = currentAddress
)
)
}
){
Text("Set Location")

}

Defines a horizontal row that

contains two buttons, "My

Location" and "Set Location",

23

-inalizing the ProductDetail Screen

Button(onClick = onSelectLocation) {

Text(text = if (deliveryLocation == null) "Select Delivery Location" else "Change Delivery Location")

}

If (deliveryLocation != null) {

Text(
text = "Delivery Address:",
modifier = Modifier.padding(top = 16.dp),
textAlign = TextAlign.Center

)

Text(
text = deliveryLocation.address.ifEmpty {

"Lat: ${deliveryLocation.latitude}, Long: ${deliveryLocation.longitude}"

1
modifier = Modifier.padding(top = 8.dp),
textAlign = TextAlign.Center

24

	スライド 1: Mobile Application Development
	スライド 2: Add the map for the Shopping App
	スライド 3: Set up the Google Cloud API Key for Map service
	スライド 4: Add Permissons for Location Serves in AndroidManifest.xml
	スライド 5: Add the Dependency
	スライド 6: Test to access API from web
	スライド 7: Add a Data class for location data
	スライド 8: Add the Location Selection Screen
	スライド 9: Add the Google Map to Screen
	スライド 10: Add the location view model
	スライド 11: Add the location data to MainViewModel
	スライド 12: Add a Button at ProductDetail Screen
	スライド 13: Regisiter the location screen at route
	スライド 14: Modify the navigation
	スライド 15: Finalizing the Location Selection Screen
	スライド 16: Finalizing the Location Selection Screen
	スライド 17: Finalizing the Location Selection Screen
	スライド 18: Finalizing the Location Selection Screen
	スライド 19: Finalizing the Location Selection Screen
	スライド 20: Finalizing the Location Selection Screen
	スライド 21: Finalizing the Location Selection Screen
	スライド 22: Finalizing the Location Selection Screen
	スライド 23: Finalizing the Location Selection Screen
	スライド 24: Finalizing the ProductDetail Screen

